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Using multitrait, multimethod data, and confirmatory factor analysis, the current study examined the effects
of arithmetic item formatting and the possibility that across formats, abilities other than arithmetic may
contribute to children’s answers. Measurement hypotheses were guided by several leading theories of
arithmetic cognition. With a sample of 1,314 third grade students (age M = 103.24 months, SD = 5.41
months), Abstract Code Theory, Encoding Complex Theory, Triple Code Theory, and the Exact versus
Approximate Calculations Hypothesis were evaluated, using 11 measures of arithmetic with symbolic
problem formats (e.g., Arabic numeral and language-based formats) and various problem demands (e.g.,
requiring both exact and approximate calculations). In general, results provided support for both Triple Code
Theory and Encoding Complex Theory. As predicted by Triple Code Theory, arithmetic outcomes with
language formatting, Arabic numeral formatting, and estimation demands (across formats) were related but
distinct from one another. As predicted by Encoding Complex Theory, executive attention was a direct
predictor of all arithmetic outcomes. Language was no longer a direct predictor of arithmetic outcomes when
executive attention was accounted for in the model; however, a strong and enduring relationship between
language and executive attention suggested that language may play a facilitative role in reasoning during
numeric processing. These findings have important implications for assessing arithmetic in educational
settings and suggest that in addition to arithmetic-focused interventions, interventions targeting executive
attention, language, and/or the interplay between them (i.e., internal speech during problem-solving) may be
a promising avenues of mathematical problem-solving intervention.

Educational Impact and Implications Statement

Symbolic formats (e.g., Arabic numerals, spoken language, written language) are usually used for
teaching and testing arithmetic ability in formal educational settings; however, research has sug-
gested that different symbolic formats may lead to different sorts of arithmetic problem-solving.
Using a large sample of elementary school-aged children, this study explored the possibility that the
manner in which problems are conveyed during testing may be an important factor for understanding
arithmetic cognition and achievement. Findings suggested that (1) different types of symbolically-
formatted arithmetic problems measure different constellations of skills, and (2) symbolic formats
may not be appropriate for measuring an ability that is purely mathematical. Executive attention was
a significant and direct predictor of arithmetic performance across problem formats. Language ability
was not a direct predictor of arithmetic performance, but rather appeared to facilitate executive
attention, helping students maintain attention and coordinate problem-solving procedures. These
findings have important implications for the selection and interpretation of arithmetic assessments
that are commonly used in educational settings. For example, students experiencing difficulty with
word problems are likely struggling with understanding concepts like selecting appropriate strategies
and executing the procedural steps of the strategies they select, and to a lesser extent may also be
struggling with concepts like interpreting number words. Findings also suggest that targeting
executive attention and/or language-facilitated executive attention (i.e., internal speech) during
mathematical problem-solving may be promising avenues of intervention.

This article was published Online First March 23, 2017.

Katherine T. Rhodes, Department of Psychology, Ohio State University;
Lee Branum-Martin, Department of Psychology, Georgia State University;
Julie A. Washington, Department of Educational Psychology, Special
Education, and Communication Disorders, Georgia State University; Lynn
S. Fuchs, Department of Special Education, Vanderbilt University.

This article was prepared, in part, for fulfillment of the requirements of
a doctoral dissertation for KTR. This research was supported by Award
R24HD075454, R24HD(075443, and ROIHD059179 from the Eunice Ken-

956

nedy Shriver National Institute of Child Health and Human Development.
The content is solely the responsibility of the authors and does not neces-
sarily represent the official views of the Eunice Kennedy Shriver National
Institute of Child Health and Human Development or the National Insti-
tutes of Health. We thank the participating students, teachers, and schools
who made this research possible.

Correspondence concerning this article should be addressed to Katherine
T. Rhodes, Department of Psychology, Ohio State University, Columbus,
OH 43210. E-mail: rhodes.390@osu.edu


mailto:rhodes.390@osu.edu
http://dx.doi.org/10.1037/edu0000189

ted broadly.

publishers.

ot to be dissemi

gical Association or one of its allied
1al user

)
—
o
1)
2
=

o
S
<=

Q

>

)
&
a9

Q

[3)
<

[9)

>
o
=]

]

)

>

o

o

3]

)

Q

=]

3]

=]
o

)
=

This article is intended solely for the persc

MEASURING ARITHMETIC 957

Keywords: arithmetic cognition, functional numeracy, mathematics achievement testing, common

method variance, symbolic formatting

Supplemental materials: http://dx.doi.org/10.1037/edu0000189.supp

Arithmetic mastery is essential for successful daily living and is
foundational for advanced-level participation in STEM disciplines
(American Association on Intellectual and Development Disabil-
ities, 2010; Coalition, S. T. E. M., 2000). Despite decades of
mathematics education reform, children in the United States con-
tinue to struggle with math achievement, and this is true of both
basic arithmetic skills and more advanced problem solving (Na-
tional Center for Education Statistics, 2013; Woodward, 2004).
This study explored the possibility that problem formatting, the
manner in which problems are conveyed during testing, may be an
important factor for understanding arithmetic cognition and
achievement.

Format-Based Concerns for Word Problems

Formatting of assessment stimuli is an important consideration
for the measurement of arithmetic ability (Ansari, 2007; Campbell,
1994; Dehaene, Piazza, Pinel, & Cohen, 2003; Lourenco, Bonny,
Fernandez, & Rao, 2012; McCloskey, 1992; Piazza, Pinel, Le
Bihan, & Dehaene, 2007). Symbolic formats (e.g., Arabic numer-
als, spoken language, and written language) are usually used for
teaching and testing arithmetic ability in formal educational set-
tings; however, research has suggested that different symbolic
formats may lead to different sorts of mental representation and
processing of numerical information (Ansari, 2007; Campbell,
1994; Dehaene et al., 2003).

In the realm of educational testing, linguistic formats serve an
important purpose for testing arithmetic ability. Language formats
are often used to convey everyday “word problems” in a variety of
testing scenarios. For example, both the National Assessment of
Educational Progress (NAEP) and the Program for International
Student Assessment (PISA) use “word problems” to assess stu-
dents’ understandings of real-world mathematics (Kelly et al.,
2013; National Center for Education Statistics, 2013). Word prob-
lems are generally thought to go beyond basic arithmetic knowl-
edge, testing students’ abilities to apply their conceptual knowl-
edge and strategic competence to problem-solving situations they
encounter in and outside of the classroom (Greer, 1997; National
Academy of Sciences, 2001; Verschaffel, De Corte, & Lasure,
1994). Ideally, word problems require students to both decide upon
strategies for problem-solving and apply their arithmetic and pro-
cedural knowledge to execute those strategies. Thus, linguistic
formats represent a valuable means of surmising how students will
perform arithmetic in their daily lives.

Despite their importance for assessing arithmetic ability, word
problems have been the subject of measurement controversy, per-
haps because they became common as indicators of mathematical
ability on popular standardized testing instruments. They have
been criticized for the extent to which they fail to encourage
students to apply common-sense to mathematical problem-solving
(Baranes, Perry, & Stigler, 1989; Verschaffel, Greer, & de Corte,
2000), conversely for the extent to which they may penalize

students with less world or situational knowledge (Chipman, Mar-
shall, & Scott, 1991; Davis-Dorsey, Ross, & Morrison, 1991; Stern
& Lehrndorfer, 1992), and perhaps most notably for penalizing
students with lower reading ability (Ballew & Cunningham, 1982;
Helwig, Rozek-tedesco, & Tindal, 2002; Helwig, Rozek-tedesco,
Tindal, Heath, & Almond, 1999; Muth, 1984).

Efforts in test reform have largely acknowledged these con-
cerns about content, design, and administration of linguistically
formatted items (American Educational Research Association,
American Psychological Association, & National Council on
Measurement in Education, 1985, 1999, 2014; National Re-
search Council Committee on Appropriate Test Use, 1999).
However, more recently, a number of researchers have sug-
gested that linguistic formats may unintentionally tap executive
abilities (e.g., working memory) and language ability, particu-
larly when examinees are unfamiliar with the language system
utilized in test formatting (Abedi & Lord, 2001; Martiniello,
2009; Rhodes, Branum-Martin, Morris, Romski, & Sevcik,
2015; Shaftel, Belton-Kocher, Glasnapp, & Poggio, 2006;
Terry, Hendrick, Evangelou, & Smith, 2010). This line of
research is focused on the idea that the very formatting of word
problems may be a source of inherent testing bias.

To be clear, the newer line of research focused on issues of
testing bias for linguistically formatted mathematics problems is
not the only research tradition to implicate domain general abilities
as important to arithmetic cognition. Several educational and de-
velopmental researchers have implicated executive abilities and
language in arithmetic performance (e.g., Bull, Espy, & Wiebe,
2008; Bull & Scerif, 2001; Cummins, Kintsch, Reusser, &
Weimer, 1988; Hecht, Torgesen, Wagner, & Rashotte, 2001;
LeFevre et al., 2013; Mazzocco & Kover, 2007; Passolunghi,
Vercelloni, & Schadee, 2007; Zheng, Swanson, & Marcoulides,
2011). Furthermore, the idea that both conceptual knowledge and
procedural/strategic ability contribute to successful performance
on word problems is not new (see e.g., Nesher, 1986; Riley,
Greeno, & Heller, 1983; Siegler, 1991; Siegler & Shrager, 1984).
However, the question of domain general testing bias is distinct
from the question of domain general contributions. This difference
is subtle but important. From the valid measurement/testing bias
perspective, the issue is not whether domain general abilities are
important contributors to arithmetic development. Rather, the issue
is whether commonly used measures of arithmetic ability are
actually also measures of domain general abilities and should
be interpreted as such (in which case it would not be surprising that
measures of “arithmetic ability” correlate with or can be linearly
regressed upon measures of domain general abilities).

Detecting Format-Based “Bias” in
Arithmetic Problems

Even with careful design of problem content, formatting may
pose a hidden threat to the validity of a measure (Messick,
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1989, 1996). Though “bias” is a term that usually means “un-
fair” or “discriminatory” in popular speech, it generally refers
to the underlying issue of construct validity in psychometric
contexts (Crocker & Algina, 2008; Hambleton, Swaminathan,
& Rogers, 1991; Reynolds & Suzuki, 2012). A test item is
biased when two examinees with the same level of ability would
not have the same probabilities of correctly answering (often
called “differential item functioning” or DIF; see e.g., Bors-
boom et al., 2002; Hambleton et al., 1991). The unequal prob-
ability of correct answers is always because the item is unin-
tentionally measuring some dimension other than the one
intended by test developers (i.e., it is not unidimensional).
When the bias is an artifact of the way test items are formatted,
it can more specifically be referred to as common method
variance (CMV; Cote & Buckley, 1987, 1988; Messick, 1989,
1996; Podsakoff, MacKenzie, Lee, & Podsakoff, 2003). In this
case, the linguistic formatting of word problems may lead to the
unintentional measurement of language and executive abilities
in addition to the intentional measurement of arithmetic abili-
ties, and the interpretation of test scores as indicators of math
ability regardless of formatting would be invalid.

Detecting common method variance requires a specific mea-
surement methodology, which ideally is guided by a strong theo-
retical foundation. Potential confounding dimensions of language
and executive abilities must be measured along with arithmetic, in
a variety of formats (i.e., a multitrait, multimethod methodology).
Then measures of arithmetic ability and potential confounding
dimensions must be included in statistical models of responses,
which evaluate not only mean structures but also variance struc-
tures. This can be accomplished with statistical models capable of
allowing for the possibility that multiple abilities may predict
behaviors (see e.g., Cote & Buckley, 1987; Eid, Lischetzke, &
Nussbeck, 2006; Marsh, Beard, & Bailey, 2002; Maul, 2013).
These statistical models fall under the broad umbrella of factor
analysis, and in the case where they are theoretically guided and
specified by a priori hypotheses about construct measurement, they
may be more specifically referred to as “confirmatory factor anal-
ysis.”

Forming Measurement Hypotheses With Leading
Theories of Arithmetic Cognition

Four leading theories of arithmetic cognition, Abstract Code
Theory, Encoding Complex Theory, Triple Code Theory, and
Exact versus Approximate Calculations, provide the theoretical
basis for forming confirmatory factor models of arithmetic
cognition in the current study. Each of these theories attempts
to explain (a) how we encode numerical information and rep-
resent numerical information mentally, (b) how we retrieve
math facts from memory, process the information, or operate
upon numerical representations to achieve solutions to prob-
lems, (c¢) how we recode our mental, numerical representations
of solutions into output and report our answers, and (d) which
cognitive domains are involved in these activities and how they
may interact with one another, if at all. In general, these four
facets define the process of “arithmetic” for theories of arith-
metic cognition, and each of these facets of arithmetic are areas
in which theories of arithmetic cognition may diverge from
each other, sometimes irreconcilably.

One consequence of this theoretical divergence has been that
there is no consensus assessment of numeric processing. Cognitive
research on arithmetic has considered any number of calculation
demands represented in a variety of formats as potentially valid
measures of arithmetic. Across various arithmetic tasks, dominant
theories of arithmetic cognition offer different accounts of how
people do arithmetic, what mental processes are involved in arith-
metic, and why people exhibit individual differences in arithmetic
ability. The following section considers each theory with regard to
its specifications for the process and measurement of arithmetic,
with special attention as to how it attempts to explain language-
formatting effects and the roles that language and executive abil-
ities may play in arithmetic performance.

Abstract Code Theory

Abstract Code Theory stipulates that a single, abstract code
is used to mentally represent all numeric information, regard-
less of input format (e.g., Arabic numerals; McCloskey, 1992;
McCloskey, Caramazza, & Basili, 1985). Because this abstract,
semantic code is the object of numeric processing, formatting
exerts no effect on numeric processing (McCloskey, 1992).
Differences in reaction time (RT) seen with language-formatted
arithmetic stimuli can be attributed to increased encoding time
necessary for mental representation of language input (McClo-
skey, Macaruso, & Whetstone, 1992). The extent to which a
language domain may be involved in aiding numeric compre-
hension or production is unclear and not specified by the
theory, but rather addressed as an area for future investigation
(McCloskey, 1992). Similarly, the theory does not specify the
extent to which some executive system of control (regulation,
attention, inhibition, and working memory) is responsible for
coordinating numeric comprehension, processing, and produc-
tion. Rather, Abstract Code Theory tends to allow for a spe-
cialized numeric processing module to facilitate the execution
of arithmetic operations. McCloskey (1992) notes that the roles
of general processing abilities (e.g., working memory) are is-
sues for future investigation.

Encoding Complex Theory

Encoding Complex Theory stipulates that the presentation of
numerical stimuli activates an associative network of format-
specific numerical “codes” or mental representations (Campbell,
1994; Campbell & Clark, 1988; Clark & Campbell, 1991). Mental
representations of number can be verbal (e.g., articulatory, ortho-
graphic) or nonverbal (e.g., visual, motor, and analog magnitude;
Campbell, 1994; Campbell & Clark, 1988; Clark & Campbell,
1991). The mental representations or “codes” are associatively
connected within a complex network, called the encoding complex,
and as such, they are assumed to stimulate each other in complex
patterns of activation without the use of a common, abstract code
(Campbell & Clark, 1988; Clark & Campbell, 1991). Successful
numeric processing (number comprehension, calculation, compar-
ison, and parity judgment) requires enhancing relevant association
patterns and inhibiting interfering association patterns within the
encoding complex network, and this is particularly true for calcu-
lation activities (Campbell & Clark, 1988; Clark & Campbell,
1991).
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Encoding Complex Theory does not specify a specific quanti-
tative domain as responsible for numeric processing. Instead,
Campbell and Clark (1988; Clark & Campbell, 1991) have impli-
cated a number of domain general cognitive capacities in resolving
the complex network of associations activated during numeric
processing. These domains include executive systems of control
(inhibition, problem-solving, attention, working memory, and spe-
cifically, Baddeley & Hitch’s, 1974 model of working memory),
the motor domain, the language domain, and the visuospatial
domain. Though executive systems of control are implicated across
problem-solving activities and language ability is implicated in
language formatted problems, the roles of motor and visuospatial
abilities in predicting outcomes across various formats and relating
to other cognitive domains during problem-solving is unclear.

Triple Code Theory

According to Triple Code Theory, stimulus format affects en-
coding and mental representation of number. The format in which
number stimuli are presented will determine the type of mental
representation encoded for them. Arabic numeral input is repre-
sented by the visual Arabic number form; language-based numeral
input is represented by the verbal word frame; sets of objects are
represented by the analogical magnitude representation (Dehaene,
1992; Dehaene & Cohen, 1995; Dehaene et al., 2003). Although
each of these factors is allowed to communicate directly with one
another via transcoding, problem demands influence the way in
which numerical processing is conducted. Under Triple Code
Theory, format-based differences in arithmetic performance are
thus attributed to issues of efficiency in the transcoding process
(Campbell & Epp, 2005).

The cognitive factors responsible for encoding and mentally
representing numeric information are not the only cognitive do-
mains involved in Triple Code Theory’s arithmetic. The language
domain supports the recognition of spoken and written number
input, the production of spoken and written number output, and the
retrieval of number facts (e.g., two plus two equals four) from
memory (Dehaene, 1992; Dehaene & Cohen, 1995). The role of
executive systems in coordinating the functions of arithmetic is
unclear in Triple Code Theory. Although the three factors for the
mental representation of number are assumed to cooperate with
one another and with the language domain in carrying out numeric
processing, the extent to which their cooperation is self-directed as
opposed to organized by a super ordinate system of attention,
inhibition, working memory, and regulation is not specified by the
theory.

Exact Versus Approximate Calculations, an Extension
of Triple Code Theory

Unlike the other theories of arithmetic cognition, exact versus
approximate calculations theory pertains specifically to the nu-
meric processing task of calculations. It is an extension of Triple
Code Theory, supporting the idea that distinct neural networks
contribute to (a) approximate calculation tasks involving semantic
representations of quantity, comparison, and estimation versus (b)
exact calculation tasks involving the retrieval of rote, verbal,
numerical facts about quantity to compute exact arithmetic solu-
tions (Dehaene et al., 1999; Stanescu-Cosson et al., 2000). The

analogical magnitude representation domain is hypothesized to be
supported by the neural network for approximate calculations, and
the verbal word frame domain is hypothesized to be supported by
the neural network for exact calculations. These domains appear to
be integrated, and they may both be recruited for difficult, exact
calculation problems involving large quantities (Stanescu-Cosson
et al., 2000).

Other assumptions of Triple Code Theory, including the possi-
ble cognitive domains involved in numeric processing are gener-
ally not addressed in the empirical literature supporting exact
versus approximate calculations. The focus of this empirically
generated theory is specifying the roles of the analogical magni-
tude representation domain and the verbal word frame domain on
approximate and exact calculation activities. The visual Arabic
number form domain is largely absent from this specification of
Triple Code Theory; however, spatial attention networks, possibly
representing some of the predictive power of the visual Arabic
number form domain and possibly representing some form of
executive control for attention, may contribute to coordinating both
types of task.

Summary: Comparing and Contrasting Theories of
Arithmetic Cognition

Although Abstract Code, Encoding Complex, Triple Code, and
Exact versus Approximate Calculations Theories overlap in many
areas, they also diverge in their explanations of mental represen-
tation of quantity and cognitive domains responsible for numeric
processing. Encoding Complex and Triple Code Theories both
agree that stimulus formatting can largely influence both mental
representation of quantity and subsequent numeric processing;
however, Abstract Code Theory stipulates that regardless of stim-
ulus format, mental representations are amodal abstract codes and
subsequent numeric processing relies on these abstract codes.
Triple Code and Abstract Code Theories both agree that numeric
processing relies on cognitive domains specialized for processing
quantity; however, Encoding Complex Theory stipulates that nu-
meric processing relies on cognitive domains which are not mod-
ular and not unique to processing quantity. Clearly, encoding
(forming mental representations) and cognitive dimensionality of
numeric processing are major areas of departure for these theories.

In terms of specifying domains which may help to facilitate
numeric processing, both Encoding Complex and Triple Code
Theories suggest that the language domain (retrieving verbal in-
formation about number facts) may contribute to numeric process-
ing. Encoding Complex Theory is perhaps the most prescriptive in
specifying additional domain general contributions to numeric
processing. Encoding Complex Theory suggests that working
memory, domain general reasoning, and attention/inhibition are all
important for successful numeric processing. Pieces of these do-
main general capacities are reflected in other theories of cognitive
arithmetic (e.g., Abstract Code Theory mentions that working
memory is of interest to numeric processing; Triple Code Theory
mentions that executive domains involving coordinating attention
are of interest to numeric processing). However, the centrality of
all of these domain general capacities is made clear in Encoding
Complex Theory, as well as the stipulation that they work in
concert to perform a variety of problem-solving activities (i.e., that
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arithmetic cognition is simply one form of problem-solving that
happens to involve operating on quantities).

From a larger cognitive theoretical position, working memory,
domain general reasoning, and attention/inhibition are three sepa-
rate but related constructs that form the basis for executive atten-
tion, the ability to form and maintain mental representations of
problems and problem-solving goals robust to distractions during
problem-solving activities (Engle & Kane, 2003; Engle, Kane, &
Tuholski, 1999; Engle & Oransky, 1999; Kane & Engle, 2002).
Executive attention is distinct from general intelligence, though
executive attention is related to the larger idea of general intelli-
gence via the importance that the construct of fluid intelligence
serves for each. Executive attention is thought to be carried out by
distinct neural substrates in the prefrontal cortex (particularly the
dorsolateral PFC), and behaviorally, is typically measured by fluid
intelligence, working memory capacity, and attention/inhibition
(Engle & Kane, 2003; Kane & Engle, 2002). Though the theory of
executive attention allows for these three capacities to be distinct
(i.e., to maintain distinct variance), their overlapping contributions
to complex problem-solving tasks that demand sustained attention
and goal maintenance in the face of distraction (i.e., their covari-
ance) is thought to reflect the larger executive attention construct
(Kane & Engle, 2002). Notably, for the purposes of the current
study, Encoding Complex Theory views arithmetic cognition as
one example of a complex problem-solving task. Thus, Encoding
Complex Theory’s hypothesized, joint contributions of working
memory, domain general reasoning, and attention/inhibition may
be best represented by the larger cognitive construct of executive
attention.

Measurement Hypotheses for the Current Study

Given these varying theoretical accounts of arithmetic cogni-
tion, the purpose of the current study was to examine arithmetic
cognition on symbolically formatted measurement instruments,
with attention to potential formatting effects and possible contri-
butions from cognitive abilities other than a quantitative domain
that is specialized for numeric processing. Each leading theory of
arithmetic cognition was used to formulate a series of measure-
ment hypotheses, and a multitrait, multimethod methodology was
used in conjunction with confirmatory factor analysis to examine
each set of hypotheses. The architecture of an arithmetic do-
main(s), implications of that architecture for measuring various
problem formats, and contributions of language and executive
attention domains were simultaneously specified and estimated in
the larger measurement models for each theory under investiga-
tion.

Method

Participants

Participants were drawn from public schools in a metropolitan
school district in the Southeastern United States. During the fall of
each third-grade school year, students who assented to participate
and whose parents consented to participate in the study were
included in assessment (and instructional intervention for the pur-
poses of a parent study focused on testing the effects of an
experimental instructional program for mathematics problem solv-
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ing and its cognitive correlates; see e.g., Fuchs et al., 2008). An
initial 2,023 students across 120 classrooms had consent to par-
ticipate in the parent study. A subset of N = 1,320 children were
randomly selected for full participation in the parent study and
received the full testing battery (including screening measures, the
full mathematics battery, cognitive measures, and demographic
reports from teachers). A final sample of 1,314 children was
selected for the current study.

The final sample had a mean age of 103.24 months (SD = 5.41,
range = 89-142), was approximately 50% female (n = 661
females, n = 652 males), and was ethnically and racially diverse
(43% African American, 40% White, 10% Hispanic, 1% Kurdish,
4% other not specified, and 1% missing). Approximately 56% of
the children in the sample qualified for free or reduced lunch.
Teachers reported that approximately 5% of the children in the
parent study sample were receiving special education services.
Of those 67 children whose teachers reported receiving special
education services, most were receiving services for learning
disabilities (N = 22), speech/hearing/language (N = 21),
attention-deficit-hyperactivity disorder (ADHD; N = 7), or
giftedness (N = 4).

Procedures

The parent study was designed to sample four, consecutive
cohorts of third grade students, following each cohort for three
academic years spanning from the fall of third grade until the
spring of fifth grade. The current analysis, however, relies only on
baseline testing for each of these four cohorts of students (i.e., all
measures in the current study were administered before the sample
cohorts received any intervention in the parent study). Table 1
displays cohort sampling information.

During September and October of each year of the study, (a) a
demographic questionnaire was completed by teachers, (b) stu-
dents’ mathematical skills were assessed in three sessions lasting
30-60 min each, and (c) students’ cognitive abilities were as-
sessed in two sessions lasting 45 min each. Total testing span from
first assessment to last was approximately 1 month.

The cognitive battery (described below) was administered indi-
vidually by trained assessment professionals in quiet testing loca-
tions within schools. Standardized mathematics assessments were
administered using recommended test developer procedures, and
nonstandardized mathematics assessments were administered to
students using a whole classroom assessment methodology. Stu-
dents received individual stimulus papers and pencils. Trained
assessment professionals read questions aloud while students fol-
lowed along on their own paper copies. Students were given time
to respond to each question, and the next question was not admin-
istered until all students or all but two students had put their
pencils down. Students were not permitted to communicate an-
swers or disrupt the testing of the whole class. Table 2 presents
descriptive statistics for mathematics, language, and executive
attention measures.

Measures

For each measure, correct items were scored “1,” and incorrect
items as “0” unless otherwise noted. Total raw score was the
number of correct items (or partially correct items in noted in-
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Table 1
Cohort Measurement Information

Measures Cohort 1 received

Cohort 2 received Cohort 3 received Cohort 4 received

Mathematics measures

WI-III applied problems

Single digit story problems

Vanderbilt complex story problems

Basic facts addition

Basic facts subtraction

WRAT written arithmetic

Test of computational fluency

Double digit addition

Double digit subtraction

Double digit addition estimation

Double digit subtraction estimation
Language measures

WASI vocabulary

WDRB listening comprehension

TOLD grammatic closure
Executive attention measures

SWAN Teacher Survey

WMTB listening recall

WI-III numbers reversed

WASI matrix reasoning

WI-III concept formation

Cohort sampling information

TR K TR XX AR XX XX XX

491 students
30 classes
7

N
N
N schools

Total sample for the current study

X X X
X X X
X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
N = 485 students N = 452 students N = 531 students
N = 30 classes N = 29 classes N = 31 classes
N = 8 schools N = 8 schools N = 9 schools

N = 1,959 students

N = 120 classrooms (classrooms do not overlap)
N = 16 schools (schools do overlap across cohorts)

Note. WASI = Wechsler Abbreviated Scale of Intelligence; WDRB = Woodcock Diagnostic Reading Battery; TOLD = Test of Language Development;

WMTB = Working Memory Test Battery.

stances), and this score was used in analyses. We report model-
based reliability, in the form of R>.

Mathematics achievement measures with language format-
ting.

WJ III Applied Problems. This measure consists of 60 orally
presented word problems designed to represent every day, practi-
cal math problems (McGrew & Woodcock, 2001). Items require
examinees to count, perform simple arithmetic operations, tell
time, tell temperature, or problem-solve by eliminating extraneous
information (McGrew & Woodcock, 2001). It is important to note
that some of the WJ III Applied Problems items do not represent
the traditional word problems that students typically encounter in
school curricula. These items represent a mixture of traditional
word problems and applied problems.

Single digit story problems. This measure consists of 14 word
problems (adapted from Jordan & Hanich, 2000), read aloud while
students follow along on their own written copies. Each item could
be solved in one step with sums or minuends of 9 or less.

Complex story problems. This measure consists of 18 word
problems, read aloud while students follow along on their own
written copies (Fuchs, Hamlett, & Powell, 2003). Each item in-
volves one to four steps for solution. Nine items are more complex
and require students to eliminate extraneous information from the
problem, solve problems involving novel contexts using real-world
information and their own problem-solving experiences, and apply
information and solutions generated in previous segments of the
complex problem. Students could earn a total of 2 points per item,

1 point for correctly calculating intermediate steps in the problem,
and 1 point for correctly labeling the final answer.

Mathematics achievement measures with Arabic numeral
formatting.

Basic facts addition. This measure consists of 25 addition fact
items (Fuchs et al., 2003). Each item involves addends of 9 or less
and sums of 12 or less. Students are provided with the stimulus
paper and a pencil and permitted one minute to complete as many
items as possible.

Basic facts subtraction. This measure consists of 25 subtrac-
tion fact items (Fuchs et al., 2003). Each item involves minuends
of 18 or less and answers of 12 or less. Students are provided with
the stimulus paper and a pencil and were permitted one minute to
complete as many items as possible.

WRAT Written Arithmetic. The WRAT-3 Written Arithmetic
subtest (Blue form; Wilkinson, 1993) consists of 40 computation
problems. Students are provided a pencil and asked to produced
written responses to as many items as possible within 15 min.
Items contain a variety of arithmetic content including basic facts,
arithmetic involving multiple operands, arithmetic operations with
proportions, and reducing and evaluating algebraic expressions
(Wilkinson, 1993).

Second grade computational fluency. This measure consists
of 25 items and is designed for second grade addition, subtraction,
number combinations, and procedural computation problems
(Fuchs, Hamlett, & Fuchs, 1990). Examinees are given 3 min to
complete as many problems as possible.
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Table 2

Descriptive Statistics for All Measures

Range:
Measure N Mean (SD) Min.-Max.

Mathematics measures
WI-III applied problems 1,302 29.15 (4.32) 2-48
Single digit story problems 1,307 9.96 (3.46) 0-14
Vanderbilt complex story problems 324 831 (6.11) 0-34
Basic facts addition 1,309 11.90 (4.99) 0-25
Basic facts subtraction 1,310  6.97 (5.03) 0-25
WRAT written arithmetic 957 23.73 (2.51) 15-34
Test of computational fluency 1,312 12.07 (6.06) 0-25
Double digit addition 339 17.12 (4.24) 0-20
Double digit subtraction 339 11.51(5.82) 0-20
Double digit addition estimation 340  8.65(7.11) 0-20
Double digit subtraction estimation 339  6.53(5.90) 0-20

Language measures

WASI vocabulary 1,314 27.35(6.45) 5-51

WDRB listening comprehension 1,302 21.12(4.29) 0-33
TOLD grammatic closure 1,303 18.78 (6.60) 0-30
Executive attention measures
SWAN Teacher Survey 1,258 75.71 (23.47)  18-126
WMTB listening recall 1,302 9.97 (3.58) 0-63
WI-III numbers reversed 1,302 9.37 (2.85) 1-26
WASI matrix reasoning 1,314 15.51 (6.45) 0-30
WI-III concept formation 1,302 15.64 (7.07) 1-39

Note. WASI = Wechsler Abbreviated Scale of Intelligence; WDRB =
Woodcock Diagnostic Reading Battery; TOLD = Test of Language De-
velopment; WMTB = Working Memory Test Battery.

Double digit addition. This measure consists of 20 2-digit X
2-digit addition items with and without regrouping (Fuchs et al.,
2003). Students are provided a written protocol, pencil, and 5 min
to complete as many problems as possible.

Double digit subtraction. This measure consists of 20
2-digit X 2-digit subtraction items with and without regrouping
(Fuchs et al., 2003). Students are provided a written protocol,
pencil, and 5 min to complete as many problems as possible.

Mathematics achievement measures involving estimation or
analog magnitude.

Double digit estimation addition. This measure consists of 20
symbolic 2-digit X 2-digit addition items in which students are
instructed to estimate answers to the nearest 10 (Fuchs et al.,
2003). Examiners complete a sample problem to demonstrate
estimation and to remind students that they are not computing
exact answers to problems. Students are provided with a written
protocol and pencil, and given 5 min to complete as many prob-
lems as possible. Exact calculated answers were scored as incor-
rect.

Double digit estimation subtraction. This measure consists of
20 symbolic 2-digit X 2-digit subtraction items in which students
are instructed to estimate answers to the nearest 10 (Fuchs et al.,
2003). Examiners complete a sample problem to demonstrate
estimation and to remind students that they are not computing
exact answers to problems. Students are provided with a written
protocol and pencil, and given 5 min to complete as many prob-
lems as possible. Exact calculated answers were scored as incor-
rect.

Language measures. Three measures of language were used.
Language is commonly defined an integration of form, use, and
content, a combination of skills in the areas of phonology, syntax,

RHODES, BRANUM-MARTIN, WASHINGTON, AND FUCHS

morphology, lexical knowledge, semantics, pragmatics, and pros-
ody (Bloom & Lahey, 1978). Among these possible indicators of
language ability, it appears that capturing listening comprehension,
vocabulary knowledge, and grammatical comprehension may be
essential for accurately measuring language ability (Carroll, 1993),
and thus, for the purpose of this analysis, these key components of
language ability were the focus of measurement.

WASI Vocabulary. The Vocabulary subtest of the Wechsler
Abbreviated Scale of Intelligence (WASI; Wechsler, 1999) con-
sists of 42 items, assessing expressive vocabulary. The initial four
items require students to view a picture display and provide a
verbal label for the object in each picture. Remaining items require
students to provide definitions for vocabulary prompts given by
examiners. Responses to all items were scored “0” if incorrect, “1”
if partially correct, or “2” if the targeted response was present
(Wechsler, 1999).

WDRB Listening Comprehension. The Listening Compre-
hension subtest of the Woodcock Diagnostic Reading Battery
(WDRB; Woodcock, 1997) consists of 38 sentences or passages,
read aloud to examinees who are then prompted to supply the
missing word at the end of each prompt. Initial items require
students to complete simple verbal analogies and word associa-
tions, and as the test continues, items become more complex and
require students to discern implications of the passages they have
just heard (Woodcock, 1997).

TOLD Grammatic Closure. The Grammatic Closure subtest
of the Test of Language Development (TOLD-Revised edition;
Newcomer & Hammill, 1988) consists of 30 sentences, assessing
ability to recognize, understand, and express English morphology.
Students are prompted with a sentence that is missing a word and
respond verbally to supply the missing word and complete the
sentence (Newcomer & Hammill, 1988).

Executive attention measures. Five measures of executive
attention were used. These measures emphasize the three, domain
general abilities whose coordination is theorized to allow mainte-
nance of mental representations of problems, attention, and
problem-solving goals, in the face of distraction during problem-
solving activities: working memory, attention/inhibition, and fluid
intelligence or inductive reasoning.

SWAN. The SWAN (Swanson et al., 2012) is a teacher survey
with 18 items measuring attention, inhibition, and self-regulation.
This instrument is used to measure the inattentive behavior, dis-
tractibility, impulsivity, and hyperactivity characteristic of ADHD
while also capturing the normal distribution of nonclinical behav-
ior. On the first nine items, teachers rate students for various types
of inattentive behavior and distractibility; on the next nine items,
teachers rate students for various types of impulsive and hyperac-
tive behaviors. Teachers respond on a 7-point Likert-type scale
(7 = far above average, 6 = above average, 5 = slightly above
average, 4 = average, 3 = slightly below average, 2 = below
average, 1 = far below average).

WMTB Listening Recall. The Listening Recall subtest of the
Working Memory Test Battery for Children (WMTB-C; Pickering
& Gathercole, 2001) consists of sequences of sentences, assessing
verbal working memory. Examiners read aloud a series of short
sentences to students. After listening to each sentence, the student
evaluates the sentence as true or false. Finally, after evaluating all
of the sentences in a trial, the student is asked to recall, in order,
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the last word of each sentence in the trial (Pickering & Gathercole,
2001).

WJ III Numbers Reversed. The Numbers Reversed subtest of
the WIJ-III (Test of Cognitive Abilities; Woodcock, McGrew, &
Mather, 2001) consists of 30 items, assessing working memory.
On each item, students listen to orally presented, random spans of
digits, and upon completion of the span, students are prompted to
orally list the digits they have just heard in reversed order. As
students progress through the test, digit spans increase, ranging
from two to eight digits (McGrew & Woodcock, 2001).

WASI Matrix Reasoning. The Matrix Reasoning subtest of
the WASI is designed to measure nonverbal problem-solving or
induction (Wechsler, 1999). This assessment requires examinees
to view visual displays of matrices from which a section is missing
and to use pattern completion, classification, analogy, and serial
reasoning to induct the rule in the matrix and predict the next item
in the sequence. Examinees complete the matrix using one of five
possible response choices from a multiple choice array beneath the
matrix prompt. Responses are identified verbally or with pointing
(Wechsler, 1999).

WJ III Concept Formation. The Concept Formation subtest
of the WI-III (Test of Cognitive Abilities; Woodcock et al., 2001)
consists of 40 items, assessing fluid intelligence and induction. On
each item, students are shown illustrations that demonstrate in-
stances and noninstances of a concept and are asked to identity the
rules for concepts by inducting or inferring the rules (McGrew &
Woodcock, 2001).

Design

The full mathematics assessment battery involved 11 measures
total, and therefore, the mathematics assessments also were deliv-
ered using a planned missing design such that not all measures
were administered to the random subset of children selected to
receive the full battery every year of the study (for more informa-
tion on planned missing designs, see e.g., Graham, Hofer, &
MacKinnon, 1996). Because of the planned missingness inherent
in this design, cohorts which have unavailable data on certain
measures are assumed to have data that are missing completely at
random, or MCAR.

Results

Planned analyses were executed in two phases of model testing.
Phase one began by examining measurement models for arithmetic
measures using confirmatory factor analysis with maximum like-
lihood estimation in MPlus 7 (Muthén & Muthén, 2012). Next
measurement models for language and executive attention were
examined using confirmatory factor analysis with maximum like-
lihood estimation in MPlus 7 (Muthén & Muthén, 2012). Phase
two examined full measurement models, incorporating all con-
structs of interest (mathematics, language, and executive attention
as outlined in the introduction). Missing data were estimated using
full information maximum likelihood estimation (see e.g., Enders
& Bandalos, 2001) in MPlus 7 (Muthén & Muthén, 2012). Note
that because hypothesized model testing was extensive and in-
cluded examination of 11 models, full model results are presented
only for a select few of the tested models. The model results
presented in text are highlighted because of their relevance to the

current study’s overall conclusions about the structure of arithme-
tic cognition, including possible formatting effects and domain
specificity. However, full model testing results, including stan-
dardized and unstandardized factor loadings and intercepts as well
as indicator residuals and corresponding commonalities, are avail-
able in the supplementary materials for this article.

Phase 1: Measurement Models for Arithmetic,
Language, and Executive Attention

This phase of model testing began with an examination of the
arithmetic portions of measurement for each of the four theories
considered in this study. Figure 1 displays diagrams for each
model tested, global fit statistics (exact and approximate), and
completely standardized indicator factor loadings. The abstract
semantic representations measurement model tested the extent to
which the 11 mathematics indicators measure a unitary, underly-
ing, common form of mental representation upon which all factors
of numeric processing operate, in predicting mathematics out-
comes. The seemingly modular encoding complex model tested the
extent to which 11 arithmetic indicators measure a unitary, under-
lying, encoding complex factor, which appears to be modular with
practice. It should be noted that this factor is being called
“seemingly-modular encoding complex” here, but in actuality is
the same measurement model as the abstract semantic represen-
tations measurement model because from a measurement stand-
point, the same factor structure can be used to represent these
hypotheses (though the implications and interpretations of that
factor structure would be conceptually distinct across the two
theories). This limitation of the factor analytic framework is con-
sidered in more detail in the Discussion section.

The Triple Code Theory model of arithmetic tested the extent to
which arithmetic behavioral outcomes could be explained by three,
latent factors with format and problem demand specific responsi-
bilities in numeric processing, a visual Arabic factor (indicated by
6 mathematics measures), an auditory verbal factor (indicated by
3 mathematics measures), and an analog magnitude factor (indi-
cated by 2 mathematics measures). The Exact versus Approximate
Calculations Theory tested the extent to which arithmetic behav-
ioral outcomes could be explained by two, latent factors, an analog
magnitude factor (indicated by 2 mathematics measures), and an
auditory verbal factor (indicated by 9 mathematics measures). Of
these models, the Triple Code Theory model of arithmetic was an
approximate good fit for the data, while the other three models of
arithmetic measurement were not. These results support Triple
Code Theory’s specification that three, separate but mutually in-
formed, format-specific factors predict arithmetic cognition out-
comes.

Measurement models for language and executive attention also
were examined during this phase of model testing. The language
measurement model tested the extent to which three indicators
(vocabulary, listening comprehension, and grammatical closures)
measure a unitary, latent language ability. With three observed
indicators, this latent language ability factor model is just-
identified (i.e., has zero degrees of freedom), meaning that tests of
global fit such as the x? test of model fit, the root mean squared
error of approximation (RMSEA), or the comparative fit index
(CF]) are trivial (Brown, 2006). Though global fit could not be
examined for this model, factor loadings indicated that these three
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Abstract Code Theory: Arithmetic Measurement Model
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Figure 1.  Summary of Phase 1 testing. The highlighted Triple Code Theory model represented the best fitting
model of arithmetic measurement for this phase of testing. See the online article for the color version of this

figure.

indicators were reasonable measures of the same underlying di-
mension.

The executive attention measurement model tested the extent to
which five indicators measure a unitary, underlying, executive
attention ability which was hypothesized to be indicated by a
measure of attention and inhibition (the SWAN teacher survey),
two measures of verbal working memory (the WIJ-III Numbers
Reversed and the WMTB-C Listening Recall subtests), and two
measures of fluid intelligence and inductive reasoning (the WASI
Matrix Reasoning and the WI-III Concept Formation subtests).

Though this model was an approximate good fit for the data, all
indicators in this model demonstrated relatively high residuals.
The executive attention model, though adequate for the purposes of
the current study, evidenced issues of fit that could be interpreted
to mean that important complexity in this construct was not being
modeled with a unitary conceptualization.

These results were not surprising given that theoretically, exec-
utive attention is a construct that represents hierarchical overlap
between the three separable abilities of working memory, fluid
intelligence, and attention/inhibition. Their covariance represented
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coordination and joint contributions to sustained attention and goal
maintenance during problem-solving. As the current study was
focused on their overlap in predicting arithmetic performances
across various formats, and because the model was an approximate
good fit for the data, this model of executive attention was ulti-

mately retained for further testing.

Phase 2: Full Measurement Models for Each Theory

The next phase of model testing examined each of the four
theories of arithmetic cognition with the inclusion of language and

[ Executive
Attention

Auditory
Verbal Math

Visual Arabic
Numeral Math

965

executive attention abilities in full measurement models. Figure 2
displays diagrams for each model tested, global fit statistics (exact
and approximate), and completely standardized indicator factor
loadings. Each model is briefly presented in the sections that

follow.
Abstract Code model.

The full measurement model of Ab-

stract Code Theory was represented with a one factor model of
abstract semantic representation, which at a minimum, was al-
lowed to correlate with other cognitive domains (e.g., language,
executive attention). Global fit statistics indicated that this factor

Abstract Code Theory: Full Measurement Model
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Triple Code Theory: Full Measurement Model
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Figure 2.  Summary of Phase 2 testing. The highlighted Encoding Complex Theory model represented the best
fitting model of arithmetic measurement for this phase of testing. See the online article for the color version of

this figure.

Exact versus Approximate Theory: Full Measurement Model
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model was not an approximate good fit for the data, (x*(141) =
1204.93, p < .001, RMSEA = .08, CFI = .87). Completely
standardized factor loadings ranged from .49 to .78; indicator
residual variances ranged from .39 to .77; and Model R? ranged
from .24 to .61. Although the correlation between language and
abstract semantic representations was moderate, r = .56, the
correlations between executive attention and abstract semantic
representations and executive attention and language were quite
high ( = .81 and r = .82, respectively). Although both the
abstract semantic representations and executive attention mea-
surement model results suggest that both of these factors are
contributing to the model misfit for the Abstract Code Theory full
measurement model, the patterns of factor correlation would sug-
gest that the relationships between executive attention and other
constructs in the model were also important sources of model
misspecification.

Encoding Complex model. The full measurement model of
Encoding Complex Theory allowed language and executive atten-
tion to directly predict arithmetic outcomes along with the seem-
ingly modular encoding complex for arithmetic. Executive atten-
tion was allowed to predict arithmetic behavioral outcomes across
various formats and problem demands; however, language was
allowed to predict arithmetic behavioral outcomes for language-
formatted problems. Global fit statistics indicated that this factor
model was an approximate good fit for the data, (x*(128) =
465.40, p < .001, RMSEA = .05, CFI = .96). Completely stan-
dardized factor loadings ranged from .05 (nonsignificant) to .74;
indicator residual variances ranged from .24 to .77; and Model R*
ranged from .23 to .76. As mentioned in the executive attention
measurement model results, the residuals for this factor were high.
However, executive attention was a significant and salient predic-
tor of all arithmetic outcomes, and language was a significant
predictor of WJ Applied Problems and Single Digit Story Prob-
lems, though these loadings were quite low.

Allowing for direct prediction of arithmetic outcomes by exec-
utive attention and language left little unique predictive power for
the seemingly modular encoding complex; however, each arithme-
tic outcome was still significantly predicted by something other
than executive attention and language (represented here by the
seemingly modular encoding complex). Three outcomes in partic-
ular (Basic Facts Addition, Basic Facts Subtraction, and Compu-
tational Fluency, all of which were formatted with Arabic numer-
als and involved relatively small problem sizes) had high encoding
complex factor loadings despite the addition of executive attention
as a predictor.

Because executive attention was a direct predictor of arithmetic
outcomes in this model, the correlation between executive atten-
tion and the seemingly modular encoding complex was restricted to
zero for the purpose of model specification. The correlation be-
tween executive attention and language was large and positive, r =
.78; however, the correlation between language and the encoding
complex was small and negative, r = —.12. These results indicate
that although language is a small but significant predictor of
outcomes in language-formatted problems, it is not a predictor of
outcomes in Arabic numeral formatted problems or estimation
problems.

Triple Code model. The full measurement model for Triple
Code Theory allowed a latent language factor and an executive
attention factor to correlate with the auditory verbal, visual, and

analog magnitude factors of Triple Code Theory. Global fit sta-
tistics indicated that this factor model was an approximate good fit
for the data, (X2(134) = 501.35, p < .001, RMSEA = .05, CFI =
.95). Completely standardized factor loadings ranged from .49 to
.92; indicator residual variances ranged from .16 to .76; and Model
R? ranged from .24 to .84. As in the Triple Code Theory arithmetic
measurement model, the arithmetic portion of this full model was
very strong. Completely standardized factor loadings ranged from
.54 to .92, and factor correlations for this portion of the model
ranged from r = .68 to r = .76, indicating that each of Triple Code
Theory’s arithmetic cognition factors were separable but highly
related. Again the executive attention measurement model results
demonstrated high residuals. However, executive attention factor
loadings indicated that the selected outcomes were all significant
and salient indicators of this factor. The executive attention factor
correlated highly with all other factors in the Triple Code Theory
model.

The addition of executive attention raised some structural ques-
tions for the arithmetic portion of the Triple Code Theory model.
Specifically, the relationship between executive attention and the
auditory verbal factor was nearly at singularity, r = .94, and the
relationship between language and the auditory verbal factor was
also quite high, » = .78. Taken together, these results indicate that
(a) problem formatting should be explicitly accounted for in mod-
eling arithmetic outcomes, (b) executive attention and language
may both play important roles in facilitating arithmetic cognition
across various problem formats, but (c) language-formatted items
in particular may be predicted by domains other than a specialized
quantitative domain.

Exact versus approximate model. The full measurement
model of Exact versus Approximate Calculations Theory allowed
a latent language factor and an executive attention factor to cor-
relate with the both the analogical magnitude representation factor
(predicting tasks requiring approximate calculations) and an audi-
tory verbal factor (predicting tasks requiring exact calculations).
Global fit statistics indicated that this factor model was not an
approximate good fit for the data, (x*(138) = 1076.75, p < .001,
RMSEA = .07, CFI = .88). Completely standardized factor load-
ings ranged from .48 to .91; indicator residual variances ranged
from .17 to .77; and Model R* ranged from .23 to .83. Although
both the exact versus approximate calculations and executive
attention measurement model results suggest that all of these
factors are contributing to the model misfit for the Exact versus
Approximate Calculations full measurement model, the patterns of
factor correlation would suggest that the relationships between
executive attention and other constructs in the model may also be
important sources of model misspecification.

Executive attention correlated significantly and strongly with all
other factors in the model, indicating that executive systems of
control may indeed play a role in facilitating both exact and
approximate calculations. Language, however, correlated only
moderately with the auditory verbal and analog magnitude factors,
but it correlated highly with executive attention. Taken together,
this pattern of correlations would seem to suggest that language is
separable from traits predicting arithmetic outcomes across exact
and approximate problem demands, which are in turn both highly
related and separate from each other (auditory verbal and analog
magnitude factors correlated at r = .76).
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Summary of Model Testing Results

Results from the arithmetic only measurement models indicated
that the Triple Code Theory model of arithmetic was the best
fitting model; however, the Triple Code Theory full measurement
model displayed some structural problems, namely a correlation
between executive attention and the auditory verbal factor that was
near singularity and very high correlations between executive
attention and the other factors of arithmetic in the model.

Conversely, results from the Encoding Complex full measure-
ment model indicated that this model of arithmetic (and its rela-
tionships with other cognitive domains) was the best fitting model;
however, the architecture for arithmetic in the Encoding Complex
Theory model was unidimensional, and results from the arithmetic
only measurement models indicated that a unidimensional arith-
metic was not a good fit for the data.

Given that (a) a three-factor model of arithmetic presented by
Triple Code Theory was an excellent fit for the data and (b) a
direct prediction of executive attention and language on math
outcomes presented by Encoding Complex Theory was an excel-
lent fit for the data, results supported both Encoding Complex
Theory and Triple Code Theory. Thus, a final, unplanned, post hoc
model, incorporating key measurement hypotheses of each theory,
was examined.

Post Hoc Testing: Hybrid Full Measurement Model

The post hoc model represents the three-factor arithmetic (only)
portion of Triple Code Theory with Encoding Complex Theory’s
specification that executive attention could be a direct predictor of
all arithmetic outcomes and that language could be a direct pre-
dictor of outcomes on language-formatted arithmetic problems. A
visual Arabic factor processes digital input and output as well as

Table 3

multidigit operations. An auditory verbal factor processes simple
mathematical facts, language-based input and output, and
language-based memory for numbers. An analog magnitude tactor
processes semantic information for number and is responsible for
performing comparison, estimation, approximate calculation, and
subitizing tasks across various formats of input and output.
Transcoding allows for these factors to inform one another directly
during numeric processing tasks. The post hoc hybrid model
represents each of these factors as a latent factor and transcoding
as the correlation between these factors.

Global fit statistics indicated that this factor model was an
approximate excellent fit for the data, (x*(124) = 327.82, p <
.001, RMSEA = .04, CFI = .97). Across outcomes, completely
standardized factor loadings ranged from —.003 (nonsignificant)
to .74; indicator residual variances ranged from .22 to .76; and
Model R* ranged from .24 to .78. As mentioned in the executive
attention measurement model results, the residuals for this factor
were high and among the highest in the model. Table 3 presents
completely standardized results for the Hybrid full measurement
model. Figure 3 displays a model schematic with completely
standardized factor loadings, indicator residuals, and latent factor
correlations.

More specifically, for the arithmetic outcomes across the three
Triple Code factors, completely standardized factor loadings
ranged from .18 to .70. All of these loadings were significant, but
only the factor loadings for the following five arithmetic outcomes
were salient: Basic Facts Addition, Basic Facts Subtraction, and
Computational Fluency (all Arabic numeral formatted and all
involving relatively small problem sizes), as well as Double Digit
Estimation Addition and Double Digit Estimation Subtraction
(both involving estimation). For the language outcomes, com-
pletely standardized factor loadings were all significant and sa-

Post Hoc Hybrid Full Measurement Model Completely Standardized CFA Results

Factor loadings (SE) by Factor

Auditory  Visual Arabic Analog Executive  Residual
Indicator Intercepts (SE) verbal number magnitude Language attention variance ~ R?
Arithmetic measures
Applied problems 6.71 (.14) .32 (.05) .04 (.06)NS .67 (.06) 40 .60
Single digit story problems 2.89 (.06) 21 (.04) .09 (L06)NS .65 (.06) 43 57
Complex story problems 1.33 (.07) .28 (.08) —.003 (.13)NS .64 (.12) 52 49
Basic facts addition 2.39 (.05) .67 (.02) 42 (.03) 37 .63
Basic facts subtraction 1.39 (.04) .61 (.02) 46 (.03) 42 .58
Written arithmetic 9.42 (.21) .38 (.03) .62 (.02) 47 .53
Computational fluency 1.99 (.05) .70 (.02) .52 (.03) 23 17
Double digit addition 4.04 (.16) .24 (.06) 48 (.04) 1 .29
Double digit subtraction 1.98 (.09) 18 (.05) .61 (.04) .60 40
Double digit estimation addition 1.21 (.06) .53 (.06) 71 (.03) 22 78
Double digit estimation subtraction 1.09 (.06) .60 (.06) .64 (.04) 23 17
Language measures
Vocabulary 4.24 (.09) 74 (.02) 45 .55
Listening comprehension 4.88 (.10) 71 (.02) .50 .50
Grammatic closure 2.82 (.06) 72 (.02) 49 Sl
Executive attention measures
Attention 3.20 (.07) .59 (.02) .65 .35
Listening Recall 2.78 (.06) 49 (.02) .76 24
Numbers reversed 3.28 (.07) .49 (.02) .76 24
Matrix reasoning 2.41 (.05) .57 (.02) .68 32
Concept formation 2.20 (.05) .67 (.02) 55 45
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Figure 3. Hybrid final arithmetic measurement model: Triple code arithmetic structure and encoding complex

measurement model.

lient, ranging from .71 to .74; however, none of the language-
formatted arithmetic outcomes were significant indicators of
language, meaning that the auditory verbal factor is distinct from
language. For the executive attention outcomes, completely stan-
dardized factor loadings were all significant and salient, ranging
from .49 to .67. The arithmetic outcomes were all significantly and
saliently indicated by the executive attention factor. Completely
standardized factor loadings ranged from .42 to .70, and they were
lowest for the three aforementioned Arabic numeral formatted/
small problem size outcomes.

Allowing for direct prediction of arithmetic outcomes by exec-
utive attention and language left little unique predictive power for
the three Triple Code Theory factors of arithmetic; however, all of
the arithmetic outcomes were still significantly predicted by its
corresponding Triple Code Theory factor. This pattern of results
indicates that something other than executive attention and lan-
guage (represented here by the visual Arabic number form factor,
auditory verbal factor, and analog magnitude factor) was predict-
ing performance for each of these problem formats or analogical

magnitude demands. The auditory verbal factor loadings were all
particularly low with executive attention in the model, which
would seem to indicate that language-formatted problems, in par-
ticular, are largely executive attention tasks.

Because executive attention was a direct predictor of arithmetic
outcomes in this model, the correlations between executive atten-
tion and the visual Arabic number form factor, the auditory verbal
factor, and the analog magnitude factor were restricted to zero for
the purpose of model specification. Similarly, the correlation be-
tween language and the auditory verbal factor was also restricted
to zero. The correlation between executive attention and language
was large and positive, r = .80; however, the correlations between
language and both the visual Arabic number form and analog
magnitude factors were small and negative, »r = —.13 and
r = —.26, respectively. Among the Triple Code Theory factors,
auditory verbal arithmetic and visual Arabic number form arith-
metic were moderately and positively related, r = .64, and analog
magnitude arithmetic and visual Arabic number form arithmetic
were slightly and positively related, r = .38. However, the audi-
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tory verbal and analog magnitude factors were not significantly
related.

This model was an approximate good fit for the data, and x*
difference testing indicated that this model significantly improved
fit as compared with all other full measurement models tested (see
Table 4). This model represented a synthesis of hypotheses from
two theories of arithmetic cognition that were supported by pat-
terns of results from all model testing, and as such, this model was
ultimately retained as the most parsimonious presentation of re-
sults.

Discussion

The purpose of this study was to evaluate the effects of item
formatting and to explore the possibility that language and exec-
utive systems of control contribute to solving various formats of
arithmetic problems. This research was approached using multi-
trait, multimethod data, and confirmatory factor analysis. Four
leading theories of arithmetic cognition were used to guide mea-
surement hypotheses about the (a) structure of mathematics abil-
ities involved in arithmetic cognition, (b) roles of symbolic prob-
lem formatting (language vs. Arabic numeral formats) and
calculation demands (exact vs. approximate) in predicting arith-
metic outcomes, and (c) possible contributions of language and
executive attention in predicting arithmetic outcomes.

Summary of Major Findings

As predicted by Triple Code Theory, the structure of arithmetic
cognition was best supported by several latent factors of quanti-
tative ability with specialization for particular formats and problem
demands. Put in terms of psychometric theory, similarly formatted
problems displayed common method variance that was explained
by unique factors of arithmetic ability. An auditory verbal factor
was largely responsible for problems that were language-
formatted. A visual Arabic number form factor was largely respon-
sible for problems that were formatted with Arabic numerals. An
analog magnitude factor was largely responsible for problems that
involved estimation across formats. This three-factor architecture
of arithmetic cognition was valuable for explaining arithmetic
outcomes across the models tested in the current study.

Table 4
Summary of Model Testing Results

969

Abstract Code Theory’s stipulation that abstract semantic codes
predict arithmetic outcomes across various formats of problem was
not supported, nor was a specification of Encoding Complex
Theory in which a unitary, seemingly modular encoding complex
predicts arithmetic outcomes across formats. Exact versus Approx-
imate Calculations Theory’s specification that exact and approxi-
mate problem demands would be predicted by separable cognitive
architectures was somewhat supported. Among calculation de-
mands, exact and approximate calculations were distinct but re-
lated; however, within exact problems, those problems with lan-
guage formatting were separable from problems with Arabic
numeral formatting.

As predicted by Encoding Complex Theory, executive attention
was a major predictor of all arithmetic outcomes. The inclusion of
executive attention as a direct predictor of arithmetic outcomes
overwhelmed the arithmetic-only models of cognition. Little vari-
ance remained for factors of arithmetic cognition to explain; how-
ever, each retained some unique predictive value.

An interesting find was that executive attention left no
predictive value for language on language-formatted problems.
Language-formatted problems were explained mostly by executive
attention and somewhat by the auditory verbal factor of arithmetic,
and language evidenced a negative relationship with Arabic nu-
meral formatted problems and estimation problems. This outcome
suggested that language was not directly contributing to arithmetic
cognition. However, the lingering, large correlation between lan-
guage and executive attention suggested that language had some
role to play in arithmetic cognition. Taken together, these findings
raise questions about the possibility that language may play a
facilitative role in reasoning, particularly for language-formatted
problems.

Explaining the relationship between language ability and exec-
utive attention in a theoretical model of arithmetic cognition will
be a challenge for future research. Because language was not
positively associated with factors of arithmetic, because language
was not a direct predictor of language-formatted arithmetic, and
because executive attention was a direct predictor of arithmetic
outcomes across factors of cognition, this study suggests that
language may play an indirect role in helping executive systems of
control to predict arithmetic outcomes.

Models tested X’ df P

Note

Initial measurement models

Abstract Code Arithmetic 555.19 36 <.001
Encoding Complex Arithmetic 555.19 36 <.001
Triple Code Arithmetic 214.66 33 <.001
Exact vs. Approximate Arithmetic 421.24 35 <.001

Language .00 0 N/A

Executive Attention 31.57 5 <.001
Full measurement models

Abstract Code Theory 1204.93 141 <.001

Encoding Complex Theory 465.40 128 <.001

Triple Code Theory 501.35 134 <.001

Exact vs. Approximate Theory 1076.75 138 <.001

Post hoc hybrid 327.82 124 <.001

.88 11
.88 11 Structurally Identical to Abstract Code Arithmetic
.96 .07
91 .09
1.00 .00 Model is just-identified
97 .06
.87 .08 Ax*(17) = 877.11, p < .001
.96 .05 Ax?(4) = 137.58, p < .001
95 .05 Ax?(10) = 173.53, p < .001
88 .08 Ax?(14) = 748.93, p < .001
97 .04 Baseline model for x? difference testing

Note.

CFI = comparative fit index; RMSEA = root mean square error of approximation.
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Several theories have implicated language as a facilitator of
systems of executive control. Most often, this relationship has been
conceptualized in terms of the construct of internal speech, also
called self-directed speech or private speech. Internal speech is not
directed socially toward communication partners other than the
self, for the purpose of facilitating cognition and behavioral control
(see e.g., Berk, 1999). In Baddeley’s (see e.g., Baddeley, 1992,
2000; Baddeley & Logie, 1999) model of working memory, inter-
nal speech may play a critical role in helping to maintain mental
representations of stimuli via an articulatory rehearsal system. In
Barkley’s (1997) model of self-regulation, internal speech helps to
regulate inhibitory control by guiding rule-governed behaviors and
self-evaluation during problem-solving. Similarly, in Zelazo’s (see
e.g., Zelazo & Frye, 1998) model of problem-solving, self-
directed, internal speech plays a crucial role in problem-solving,
particularly during planning, inhibition, and evaluation.

Measuring internal speech may require methods that use careful
behavioral observation and self-reporting during and after the
performance of problem-solving tasks (Berk, 1999). Though this
was beyond the scope of the current study, future research should
investigate the construct of internal speech as an indirect predictor
of arithmetic problem-solving.

The addition of executive attention as a direct predictor of
arithmetic outcomes not only impacted the relations between fac-
tors of arithmetic and language, but also executive attention im-
pacted the relationships between the three factors of arithmetic
cognition. Although the three factors of Triple Code Theory evi-
denced a pattern of strong, positive relationships when modeled in
isolation, this was no longer true when executive attention was
explicitly modeled. Problems involving exact calculations re-
mained highly related across language formats (on the auditory
verbal factor) and Arabic numeral formats (on the visual Arabic
number form factor); however, the relationships of these factors
with the analog magnitude factor changed when executive atten-
tion was included. With explicit modeling of executive attention in
arithmetic outcomes, the visual Arabic number form factor was
only slightly related to the analog magnitude factor, and the
auditory verbal factor was no longer related to the analog magni-
tude factor.

These correlations represented Triple Code Theory’s speci-
fication of transcoding, or direct communication between fac-
tors of arithmetic cognition during numeric processing, and it is
this notion of transcoding that allows Triple Code Theory’s
arithmetic factors to avoid necessarily communicating via ab-
stract semantic codes. Though direct communication between
Triple Code Theory’s factors is assumed during numeric pro-
cessing, only the analog magnitude factor is hypothesized to
contain semantic information about number. These findings
suggest that when the role of executive attention in arithmetic
cognition is directly modeled, transcoding with the analog
magnitude factor may be minimal or nonexistent. Perhaps nu-
meric processing for problems involving language-formats, Ar-
abic numeral formats, multidigit operations, and language-
based memory for numbers relies more heavily on temporarily
maintained mental representations of problems in a coordinated
system of executive attention than it does on semantic informa-
tion about number.

RHODES, BRANUM-MARTIN, WASHINGTON, AND FUCHS

Implications for Measuring Arithmetic

The findings from the current study raise important questions
about the inferences that can confidently be made from various
formats of arithmetic tests. The assumption that all assessments
that involve arithmetic are inherently measures of arithmetic abil-
ity, and only arithmetic ability, may not be warranted. Features of
problem formatting and problem demands may influence the ex-
tent to which measurement instruments capture arithmetic ability,
and even when measures appear to reliably and validly capture
arithmetic skill, they may also be measures of executive systems of
control.

When attempting to measure arithmetic cognition, measurement
formatting and problem demands are important, but all of the
arithmetic outcomes in the current study were largely predicted by
domain general capacities in executive attention. Despite the over-
whelming effect of executive attention, several measures of arith-
metic did retain unique predictive value that was salient. These
measures either involved Arabic numeral formatting and small
problem sizes or estimation problem demands. Such formats and
problem demands may be promising methods of assessing basic
conceptual competence because these types of problems remained
strong predictors of arithmetic cognition despite the contributions
of executive attention.

Conversely, language-formatted arithmetic items may yield re-
sults with dubious inferential value for assessing some “pure”
construct of arithmetic cognition. Language-formatted items re-
tained little unique predictive value once executive attention was
added as a direct predictor of arithmetic outcomes, suggesting that
language-formatted items may be mostly measures of executive
attention and, by extension, the role of language ability in facili-
tating linguistic problem-solving. Thus, language-formatted “arith-
metic items,” may more accurately be labeled “linguistically for-
matted problem-solving tasks that involve some arithmetic.”

Given prior research findings and the fact that word problems
are intentionally designed to reflect real-world problem-solving
experiences, it is not surprising that word problems exhibited these
patterns of multidimensionality (indicated by both executive atten-
tion and arithmetic ability); however, if they are multidimensional
measures of both executive attention and arithmetic abilities, they
should be interpreted as such as opposed to being collapsed into
interpretations of mathematical ability based on other problem
formats and demands. In other words, arithmetic word problems
do not appear to be measures of a “pure” arithmetic ability; they
also largely appear to be measures of the ability to form and
maintain mental representations of problems and problem-solving
goals robust to distractions during problem-solving activities. For
interpretations of examinee performances on word problems to be
accurate and valid, the multidimensional nature of these problems
should not be ignored, and the elements of sustained and coordi-
nated attention that they require (i.e., not just conceptual knowl-
edge, but also strategic and procedural competence) should be
acknowledged.

Limitations and Future Directions

Adapting theories toward specific measurement hypotheses.
The specificity required by the factor analytic framework is a
limitation of the current project. Factor models represent abilities
or commonalities between various measures, but they do not
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represent processes unless a process is specifically being modeled
(Carroll, 1993). Such a model would necessitate structural hypoth-
eses among traits, with the specific allowance for traits to influence
one another in the time-scale specified by the process (e.g., over
seconds, minutes, days, and years). Arithmetic cognition, execu-
tive attention, and self-directed speech are processes. Inferences in
the current study are limited to traits, but the relationships among
traits at a single time point can give important clues about under-
lying processes, and factor analysis can help to answer important
questions about the properties of measurements.

It is important to note that these theories of arithmetic cognition
were not specified with factor analysis methodologies in mind, and
so, translation into factor analytic frameworks becomes difficult
when theories of arithmetic cognition do not provide explicit
measurement parameters. For example, “contributions” could be
conceptualized as direct predictions of latent factors, correlations
between latent factors, or perhaps residual error terms. Some
specific aspects of each theory lend themselves to formulations
with factor models, while other aspects were not necessarily test-
able with this method. For example, modeling Abstract Code
Theory’s highly complex mechanism of numeric processing was
beyond the scope of the current study. Measurement hypotheses in
the current study were carefully constructed with the aim of
striking a balance between faithfully representing theoretical pos-
tulates and holding the research to the methodological rigor de-
manded by factor analysis. Still, the measurement hypotheses for
theories of arithmetic cognition are open to other interpretations.
Future research should explore alternate measurement hypotheses
with these theories of arithmetic cognition.

Adapting theories toward developmental hypotheses. The
second limitation of the current project lies in the generalization of
theory to a population at an earlier developmental stage. This
project aimed to understand the arithmetic cognition of school-age
children and the facets of numerical cognition that may predict
their development into skilled adults. Although some theories of
arithmetic cognition make specifications about growth and the
ways in which one might become a skilled adult, others do not.
Invariance testing (testing the hypothesis that the same cognitive
architecture specified for adults can be assumed for children) is
implicit in the current project. However, extant neuroimaging
research has indicated that quantitative cognition of children and
adolescents may be qualitatively different from that of skilled
adults (e.g., Cantlon et al., 2006). Future research should examine
the development of arithmetic cognition in children, adolescents,
and adults utilizing a longitudinal design and explicit testing of
longitudinal measurement invariance. Indeed, the measurement
findings of the current study may not generalize to adolescents,
adults, or even children at earlier or later developmental stages
than those included in the current study, and it would not be
surprising to find age-related changes in the roles of language and
executive attention in various arithmetic tasks. A line of develop-
mental research with explicit focus on longitudinal measurement
invariance should inform theoretical extensions of existing theo-
ries of arithmetic cognition, addressing hypotheses about the de-
velopmental continuum of quantitative cognition and its ideal
measurement.

Generalizability of symbolic formatting. Another limitation
of the current project is that it is exclusively focused on numeric
processing with symbolically formatted measures of arithmetic

(e.g., language or Arabic numeral formats) and does not include
nonsymbolically formatted measures of arithmetic (e.g., dot ar-
rays). Although the arithmetic that children will encounter in most
formalized assessment settings is symbolically formatted, devel-
opmental research on the quantitative domain is focused largely on
children’s performance with nonsymbolically formatted measures
(e.g., Feigenson, Carey, & Hauser, 2002; Starkey & Cooper, 1980;
Wynn, 1992; Xu & Spelke, 2000). Including nonsymbolically
formatted measures of arithmetic in measurement batteries will be
essential for establishing common scaling and examining devel-
opmental continuity in the quantitative domain, and may very well
provide a more “pure” measure of numerical cognition than sym-
bolic formats. Future research should explore arithmetic cognition,
formatting effects, and domain specificity with the inclusion of
nonsymbolically formatted arithmetic items in the measurement
battery.

Similarly, many other aspects of item modality (e.g., timed/
untimed, problem size, and number of steps required to solve a
problem) as well as item content (e.g., arithmetic, algebraic rea-
soning, and geometry) are often controlled or varied to approxi-
mate item difficulty across various types of mathematics tasks. The
purpose of the current study was to examine symbolically format-
ted arithmetic items with regard to theoretical specifications of the
cognitive abilities involved in solving them; however, future re-
search should examine other aspects of item modality and their
effect(s) on the measurement of cognitive abilities across a variety
of tasks involving differing mathematical content.

Overlap in features of item modality. Although children
were instructed to use estimation to solve the double digit estima-
tion problems, and although these items were speeded to encour-
age the use of the most efficient strategy for solution, it should be
noted that these problems could have been solved by using the
strategy of calculating the exact answer and then rounding. In other
words, depending upon the strategies used by children during
numeric processing, the double digit estimation problems may
have been solved using a combination exact calculations and
approximation. Unfortunately, the strategy usage used by children
during numeric processing was beyond the scope of the current
study. It is indeed probable that certain formats may be better
suited for eliciting certain problem-solving strategies (e.g., non-
symbolic formats may be better suited to eliciting approximate
calculation strategies; see e.g., Siegler & Shrager, 1984).

Similarly, the WJ Applied Problems subtest items are language-
formatted problems designed to measure children’s knowledge of
and ability to solve everyday problems (e.g., telling time). These
problems served different roles in different models in the current
study. They were alternately loaded onto unitary factors (abstract
semantic representations or a seemingly modular encoding com-
plex), an exact calculations factor, and an auditory verbal factor.
Their treatment as exact calculation items was perhaps the most
questionable. Problems on the WJ Applied Problems subtest re-
quire children to produce exact answers, but they do not necessar-
ily require children to perform exact calculations. Of the 39 prob-
lems designed for examinees who are not above average adults or
who are below college-level in education, most require knowledge
of numbers and operations; however, 12 items (approximately
31%) involve the production of exact answers requiring specific,
applied knowledge of telling time, recognizing American money,
or reading a thermometer. Thus, unfortunately, the WJ Applied
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Problems subtest represented a mixture of traditional word prob-
lems and applied problems. Though this subtest was consistently
significant and salient as an indicator in the models tested for the
current study, generalizing of the WJ Applied Problems subtest as
a test of traditional word problems requiring exact calculations is
limited by the extent to which it includes applied problems.

In both the case of the double digit estimation problems and the
W1I Applied Problems, issues of item-formatting overlapped with
issues of item calculation demands in ways that may have led to
model misfit. This caveat is particularly relevant to the exact
versus approximate calculations model. This research found some
support for a central tenet of exact versus approximate calculations
theory; problems requiring the production of exact solutions ap-
peared to be separable from problems requiring the production of
approximate solutions. Symbolic formatting was also an important
contributor to the dimensionality of arithmetic measures. How-
ever, examination of the possibility that item features may interact
to predict examinee responses was beyond the scope of the current
study. Future research should examine the relationship between
item modality and the measurement of arithmetic cognition with
explicit control in the design of item features (e.g., formatting,
calculation demands), observation of children’s strategy usage
during numeric problem-solving, and allowances for the possibil-
ity that features of item modality may interact to predict children’s
responses.

Measuring and modeling executive attention. For the pur-
poses of the current study, executive attention was indicated by a
combination of measures of working memory, inhibition and at-
tention, and fluid intelligence (inductive reasoning or problem-
solving). These measures were combined in an a priori specified,
latent factor model with the aims of (a) synthesizing important
facets of executive attention, while (b) explicitly accounting for
measurement error. However, it should be noted that across all of
the full measurement models and in the executive attention-only
measurement model, the executive attention factor evidenced some
problems.

Although this unitary executive attention factor displayed good
model fit in most ways, patterns of residual variance indicated that
much of the complexity of these indicators was not accounted for
by a single factor. The single factor called executive attention
likely represented a hierarchical construct, which would help to
explain the variance unaccounted for in fluid intelligence, working
memory, and attention/inhibition indicators. For the purposes of
the current study, executive attention was interpreted as an overall
relationship between these key systems of control in coordinating
problem-solving activity; however, future research should inves-
tigate the extent to which fluid intelligence, working memory, and
attention/inhibition may make shared and unique contributions to
arithmetic (e.g., a bifactor model).

Summary and Conclusions

Because this study aimed to examine the construct of arithmetic
cognition by examining the formatting and dimensionality of arith-
metic measures, a factor analytic framework in conjunction with a
multitrait, multimethod approach was appropriate. The factor an-
alytic framework requires explicit statements of hypotheses about
model parameters, which can reveal areas of theoretical misspeci-
fication, implications of measurement techniques for construct-

level inferences, as well as areas of theoretical ambiguity. Though
the specificity required by a factor analytic framework can be
challenging, this approach is a promising method for evaluation of
the construct of arithmetic cognition and its potential measures.

Four leading theories of arithmetic cognition were used to guide
measurement hypotheses in the current study. Each of the theories
was designed to explain the arithmetic cognition of skilled adults.
This study sought to understand the arithmetic cognition of devel-
oping children who have some formal education and exposure to
arithmetic, but are still actively engaged in mathematics education.
Describing a developmental continuum that links the arithmetic
cognition of developing children to the cognition of skilled adults
will be a crucial next step for researchers and theoreticians.

In general, results from this study provided support for both
Triple Code Theory and Encoding Complex Theory, and to some
extent, Exact versus Approximate Calculations Theory was also
supported. As predicted by Triple Code Theory, arithmetic out-
comes with language formatting, Arabic numeral formatting, and
estimation demands across formats were related but distinct from
one another. This finding is also compatible with Encoding Com-
plex Theory’s stipulation that formatting effects exist for arithme-
tic cognition. The large and enduring relationship between prob-
lems that required exact calculations (across formats) also provides
support for Exact versus Approximate Calculations Theory’s stip-
ulation that exact calculation problems may draw from the same
cognitive processes.

Executive attention was a direct predictor of all arithmetic
outcomes. This finding is compatible with Triple Code Theory’s
stipulation that other cognitive domains, in particular domains
responsible for coordinating visuospatial attention, may contribute
to arithmetic cognition. Executive attention is complex, and mod-
eling that complexity was beyond the scope of the current study;
however, the facets of working memory, inhibition and attention,
and induction and reasoning ability shared a unitary predictive
power in explaining arithmetic.

Given the strong and enduring relationship between executive
attention and language ability, and the fact that language ability
was not a direct predictor of arithmetic performances, this synthe-
sized executive attention may have been facilitated by language
ability in a collaborative relationship that was beyond the scope of
the current study. Future research should investigate the extent to
which internal or self-directed speech may facilitate executive
attention and indirectly predict performance on arithmetic
problem-solving tasks. This pattern of results may be particularly
pertinent for language-formatted arithmetic items.

Results from the current study support the growing body of liter-
ature indicating that caution should be used in interpreting the results
from language-formatted arithmetic items (e.g., Abedi & Lord, 2001;
Martiniello, 2009; Rhodes, Branum-Martin, Morris, Romski, & Sev-
cik, 2015). These items may have little construct validity as pure
measures of mathematics ability, but rather appear to be largely
executive attention tasks which also involved some arithmetic ability.
Though problems formatted with Arabic numerals or involving ap-
proximate calculations were also multidimensional measures of both
executive attention and arithmetic abilities, these measures retained
far more predictive power for measuring arithmetic abilities than
language-formatted problems. When executive attention was allowed
to directly predict arithmetic outcomes on language-formatted prob-
lems, arithmetic abilities had either no significant or no salient pre-
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dictive power. Thus, difficulties with linguistically formatted arith-
metic problems likely largely indicate problems with domain general
problem solving capacities, and to a lesser extent, may also indicate
some domain specific arithmetic ability. Inferences about pure math-
ematical ability should be made with caution when they are based on
results from language-formatted testing instruments, and this caution
is particularly relevant to national achievement assessments that uti-
lize language-formatting in their assessment of mathematical compe-
tence.

The notion of pure mathematical abilities raises a fundamental,
ontological question for researchers and practitioners who are
designing, administering, and interpreting educational assessments
of basic mathematical competence: What is meant by “pure math-
ematical ability,” and is it possible to design a symbolically for-
matted, educational assessment of the most basic, arithmetic skills
involved in such a construct? The current study found evidence
that various types of symbolically formatted arithmetic problems
(a) demonstrated unique clusters of quantitative skills depending
upon their designs of problem formats and calculation demands,
and (b) also measured domain general executive attention ability,
particularly when problems were linguistically formatted. Taken
together, these findings imply that (a) different types of symboli-
cally formatted arithmetic problems measure different constella-
tions of skills, and (b) symbolic formats may not be appropriate for
measuring some construct that is purely mathematical.

Thus, measures of arithmetic should be designed, selected, and
interpreted differently with respect to their formats and problem
demands. For example, if one is interested in obtaining a strong
measure of conceptual number knowledge, Arabic numeral formats
and problems with approximate calculation demands may be more
desirable than language-formatted problems. Students experiencing
difficulty with Arabic numeral formats or approximate calculation
problems may be struggling with understanding concepts like place-
value (i.e., the visuospatial strings of digits represented by the visual
Arabic number form) or numerosity (i.e., the semantic understanding
of a number’s cardinality and ordinality represented by the analog
magnitude form), and to a lesser extent, may also be struggling with
executive attention required during problem-solving. If one is inter-
ested in understanding the roles that strategic and procedural compe-
tence play in the realm of arithmetic problem-solving, word problems
may provide a more desirable measure of arithmetic. Students expe-
riencing difficulty with word problems are likely struggling with
understanding concepts like selecting appropriate strategies for
problem-solving and executing the procedural steps of the strategies
they select, and to a lesser extent may also be struggling with concepts
like interpreting number words (i.e., the syntactic, phonological,
and/or graphemic understanding of number represented by the audi-
tory verbal word frame).

Regardless of the measurement technique selected for assessing
arithmetic skill, researchers and practitioners should also be aware
that language may be playing a crucial, indirect, and internal role in
facilitating children’s mathematical problem-solving. The findings of
the current study suggest that language ability is not a direct predictor
of arithmetic performance for many students, but rather may help
students to maintain attention and coordinate problem-solving proce-
dures. More research is needed to determine the role that internal
speech may play in arithmetic problem-solving; however, the strong
and enduring relationship between language and executive attention
in the current study suggests that targeting executive attention or

helping children to moderate their internal speech during mathemat-
ical problem-solving may be promising avenues of intervention.
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