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The strategy choice model (SCM) is a highly influential theory of human problem-solving. One strength
of this theory is the allowance for both item and person variance to contribute to problem-solving
outcomes, but this central tenet of the model has not been empirically tested. Explanatory item response
theory (EIRT) provides an ideal approach to testing this core feature of SCM, as it allows for
simultaneous estimation of both item and person effects on problem-solving outcomes. We used EIRT
to test and confirm this central tenet of the SCM for adolescents’ (n � 376) solving of addition problems.
The approach also allowed us to identify the strategy choices of adolescents who still struggle with basic
arithmetic. The synthesis of SCM theory and EIRT modeling has implications for more fully investi-
gating the sources of individual differences in students’ problem solving, and for identifying problem-
solving patterns associated with poor academic achievement.

Educational Impact and Implications Statement
Strategy usage may be an important avenue for the identification and treatment of mathematics
difficulties. The current study examined individual differences in strategic problem-solving behavior
with a sample of adolescent problem-solvers. Results indicate that even in adolescence there are
meaningful individual differences in how students solve addition problems, including some adoles-
cents who continue to rely on immature counting strategies. Those adolescents who still relied on
immature counting strategies were also struggling with broad mathematical achievement. These
struggling students can be identified with a brief addition strategy assessment, and our results suggest
that they may benefit from mastering more developmentally mature strategies. For students with
mathematical difficulties, simply advancing to developmentally mature strategy selection may be an
important intervention goal, one which is often overlooked in educational settings.
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Across the life span, the strategies used during problem-solving
are an important indicator of mathematical cognition. Since its
original formulation over 30 years ago, the strategy choice model
(SCM) has been one of the most influential conceptualizations of
the development of problem-solving competencies and is well
characterized for arithmetical problem solving (Bailey, Littlefield,
& Geary, 2012; Geary, Widaman, Little, & Cormier, 1987; Geary
& Wiley, 1991; Geary, Hoard, Byrd-Craven, & DeSoto, 2004;
Siegler, 1986, 1987a, 1988a; Siegler & Robinson, 1982; Siegler &
Shrager, 1984). A core assumption of the SCM—that problem
solving is a joint function of item difficulty and individual-level
knowledge—was assessed in the early phases of theory develop-
ment (Siegler, 1987b) but has not yet been evaluated with more
recent and nuanced analytic methods that allow both items and
persons to differ in their contributions to problem-solving out-
comes. This omission means that important individual differences
between problems and problem-solvers are potentially obscured in
favor of reporting average trends. Accordingly, we evaluate this
core assumption of the SCM using an explanatory item response
theory (EIRT) modeling method; specifically, allowing for indi-
vidual differences or “random effects” for both items and persons.
The method was applied to a sample of adolescent problem-solvers
who are understudied in the context of the SCM literature. We
evaluate the utility of the method for identifying struggling ado-
lescent problem-solvers based on the strategies used to solve
arithmetic problems and demonstrate convergent and discriminant
validity of the strategy parameters using measures of broad
achievement in mathematics and reading. The individual differ-
ences between adolescent problem-solvers would not have been
distinguishable using the analytic methods traditionally used in
evaluating the SCM.

The SCM

The SCM outlines the processes underlying people’s use of one
problem-solving approach or another to solve any particular prob-
lem as well as the mechanisms that govern developmental change
in the mixture of strategies used during problem solving (Kerkman
& Siegler, 1993, 1997; Siegler, 1986, 1987b, 1988a, 1991, 1996;
Siegler & Shrager, 1984; Siegler & Taraban, 1986). The central
tenet is that people’s adaptive strategy choices require balancing
conflicting problem-solving goals (e.g., speed and accuracy) and
managing problem-specific demands (e.g., varying levels of prob-
lem difficulty) and cognitive constraints (e.g., the ability to retrieve
a solution from memory). Arguably, it is the incorporation of
variation in problem demands, individual differences in domain-
specific knowledge, and human strategic behaviors that has con-
tributed to the SCM’s continued influence in cognitive, develop-
mental, and educational psychology.

Siegler’s initial formulation of the SCM was to explain chil-
dren’s solving of addition and subtraction problems, and this
formulation subsequently proved successful in explaining strategy
choices in multiplication, spelling, balance scales, reading, and
telling time, among other domains (Siegler, 1986, 1987a, 1988b,
1991, 1996; Siegler & Jenkins, 1989; Siegler & McGilly, 1989;
Siegler & Shrager, 1984). With respect to arithmetic, the SCM has
been successfully used to understand developmental changes in the
strategy mix (Siegler & Jenkins, 1989), cross-cultural differences
in children’s strategy choices and cross-generational differences in

adults’ choices (Geary, Fan, & Bow-Thomas, 1992; Geary,
Frensch, & Wiley, 1993), as well as the problem-solving patterns
and underlying cognitive deficits that are common in children with
mathematical learning difficulties (MLD; Geary & Brown, 1991).
As a result, addition is perhaps the best understood domain of
strategy development.

Typical and Atypical Addition Strategy Development

At school entry, most children use a combination of finger
counting and verbal counting to solve the majority of addition
problems (Siegler & Shrager, 1984). With the former, children
lift their fingers to physically represent the addends and then
count them to reach a sum. During verbal counting, children count
audibly or move their lips as if counting implicitly. Whether or not
they use their fingers, children sometimes count both addends
starting from 1 (sum strategy), start with the smaller addend and
count the larger one (max strategy), or start with the larger addend
and count the smaller one (min strategy). A critical prediction of
the SCM is that the use of counting results in the formation of an
associative relation between the problem and the generated an-
swer.

Once associative memories between problem addends and the
answer generated by counting are formed, the child will begin to
use retrieval in problem solving. So, when the problem is pre-
sented again, memory representations of counting schema and
the answer stored in long-term memory compete for expression. If
the activation level of the counting schema exceeds the strength
of the problem–answer association (associative strength), then the
child will count to solve the problem. Repeated use of counting
builds this associative strength and eventually results in consistent
use of retrieval-based problem solving (Siegler, 1996; Siegler &
Shrager, 1984). Decomposition is one common retrieval-based
strategy (Siegler, 1987c). The problem 6 � 8 might be solved by
decomposing 8 into 4 and 4, then retrieving the answer to 6 � 4,
and finally adding back the other 4. The use of decomposition is
also dependent on a conceptual understanding of number relations
(Geary et al., 2004). With sufficient practice, most children will
directly retrieve the answer from long-term memory to solve most
simple problems, although many students in the United States do
not receive this level of practice and thus continue using a mix of
counting and retrieval-based strategies into adulthood (Geary &
Wiley, 1991).

On top of amount of practice, individual differences in chil-
dren’s strategy choices are related to their confidence in the
accuracy of the retrieved answer (Siegler, 1988a). “Perfectionists”
will often resort to min-counting to verify the accuracy of re-
trieved answers, whereas “not-so-good” students state any an-
swer that comes to mind, whether or not it is likely to be
correct. There also appear to be important individual differ-
ences in the hippocampal-dependent memory system that under-
lies the formation of problem-answer associative memories (Qin et
al., 2014), and this system has been implicated in the retrieval
deficits that are a cardinal feature of long-term learning difficulties
in mathematics (Geary, 1993; Supekar et al., 2013).

These retrieval deficits have been well documented in elemen-
tary schoolchildren (e.g., Geary & Brown, 1991). These children
can retrieve the answer to some basic addition problems, but to
solve other problems they typically have to resort to min or
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sum-counting. The persistence of these deficits has been confirmed
in longitudinal studies of elementary schoolchildren (Geary,
Hoard, & Bailey, 2012; Jordan, Hanich, & Kaplan, 2003) and
predicts later difficulties memorizing the basic structure of algebra
equations (Geary, Hoard, Nugent, & Rouder, 2015). In the latter
study, earlier retrieval deficits predicted later algebra difficulties in
high school, but addition strategy choices were not directly as-
sessed in high school. In fact, little is known about the retrieval
deficits and continued reliance on counting strategies in adoles-
cents who have difficulties with mathematics learning. The current
study addresses this gap in the literature.

Empirical Evaluation of the Strategy Choice Model

Numerous studies have confirmed the basic processes identified
in the SCM (Kerkman & Siegler, 1993, 1997; Siegler, 1986,
1987b, 1988a, 1991, 1996; Siegler & Shrager, 1984; Siegler &
Taraban, 1986). The evaluation of these processes is based on
differences between strategies, solution times, and accuracies. For
example, associative strengths between problems with smaller
addends (e.g., 2 � 3) and their sums are predicted to form earlier
than for problems with larger addends (e.g., 8 � 7). Empirically,
retrieval should be used more frequently to solve problems with
smaller addends and the accompanying solution times should be
faster and accuracies higher than for problems with larger addends
(Siegler, 1987c). In other words, strategy frequencies, solution
times, and accuracy percentages vary systematically with problem
difficulty. Strategies also differ in systematic ways, whereby re-
trieval and decomposition are executed more quickly than count-
ing strategies and min-counting is generally more accurate than
sum-counting due to fewer counts and thus fewer opportunities to
commit an error (Geary et al., 2012; Siegler, 1987c; Siegler &
Shrager, 1984).

Most SCM analyses to date have focused on describing strate-
gies and comparing their effects on problem-solving outcomes—
how often types of strategies are used, how effective different
strategies are in quickly and accurately achieving solutions, when
different types of strategies emerge during development, and the
extent to which strategy usage can be employed to identify
problem-solvers with different cognitive profiles. For example,
calculating the relative frequency of a strategy entails tallying its
use across a set of problems and then calculating an average ratio
across a sample of problem-solvers who have attempted those
problems. Similarly, calculating the relative efficiency of a strat-
egy entails averaging the accuracy and solution time on problems
in which it was used across a sample of problem-solvers. These
averages can then be compared between problem-solvers of a
particular age, problem-solvers of different cognitive profiles, and
even across problems of a certain type (e.g., single digit items vs.
double digit items). Thus, the methods used to evaluate the SCM
to date have necessarily relied on three main analytic methods: (a)
mean differences, (b) bivariate correlations, and (c) multiple re-
gressions. However, these traditional methods all rely either on
collapsing across repeated items to assess differences across peo-
ple (as described above) or on collapsing across persons to analyze
differences across problems.

Collapsing across problems or persons requires the assumption
of negligible intraclass variability, an assumption that is often
unfounded because level members (e.g., items or persons) fre-

quently do vary substantially from one another (Embretson, 1983).
Indeed, in practice as much as 80% to 90% of the variance in
outcomes may be accounted for by “random” differences between
members of a within-group cluster (e.g., children nested in a
school, schools nested in a district; Raudenbush & Bryk, 2002). In
these cases, an important source of variance in the data is simply
relegated to “error” terms and otherwise hidden in averaged re-
sults. EIRT is a modern psychometric method capable of avoiding
this confound by simultaneously estimating problem and person
effects and, in doing so, provides a more complete and nuanced
assessment of the SCM than is possible with traditional analytic
methods.

Evaluating the SCM With EIRT

EIRT combines experimental design (the goal being to explain
a dependent variable in terms of the experimental design factors)
and observational measurement (the goal being to estimate indi-
viduals’ traits on a construct or set of constructs; De Boeck &
Wilson, 2004). Thus, the goal of EIRT is explanatory measure-
ment, to provide measurement models capable of both describing
individual traits and explaining individual differences (De Boeck
& Wilson, 2004). Essentially, EIRT is a special name given to
models of multilevel, categorical responses, in which latent esti-
mates are generated for both item and person parameters, and
explanatory variables can be modeled as predictors of responses
across levels of analysis (Baayen, Davidson, & Bates, 2008; De
Boeck & Wilson, 2004). EIRT is especially well-suited for exam-
ining theories such as the SCM.

In general, models used in EIRT fall within the broad family of
generalized linear mixed models and nonlinear mixed models that
are traditionally used to analyze item responses. However, EIRT
models may vary with respect to their specifications about (a) the
modeled data structures (i.e., the model predictors as item-level,
person-level, or cross-classified—meaning that units of analysis
are simultaneously nested under two levels, such as children nested
in both neighborhoods and schools), and (b) the nature of model
effects (i.e., fixed vs. random effects, where fixed effects, repre-
sent the average outcome for all group members, with random
components, represented by allowing each individual to deviate
from this average). Tailoring an EIRT model to correctly evaluate
the SCM requires mapping central theoretical postulates of the
SCM onto statistical specifications inherent in an EIRT model.

Evaluating the SCM for individual differences should incorpo-
rate the theoretical ideas that people engage in adaptive problem
solving by (a) using a variety of strategies across a variety of
problems, (b) managing a variety of problem demands and cogni-
tive constraints, and (c) optimizing the potential trade-offs of
problem solving (e.g., speed vs. accuracy). In statistical terms, the
first specification can be met with a cross-classified model, such
that adaptive problem-solving responses are nested in both persons
and items (and strategy usage is a predictor of these responses at
both person and item-levels; (Hill & Goldstein, 1998; Matuschek,
Kliegl, Vasishth, Baayen, & Bates, 2017). In particular, the effect
of strategy use may be different for different persons (i.e., some
may use it better than others). The second specification can be met
with modeling mixed effects, both fixed and random effects for
items and persons, such that across items and persons an average
effect can be observed but individual differences are allowed (for
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a more in-depth review of mixed effect modeling, see, e.g.,
Raudenbush & Bryk, 2002). The third specification can be met
with a bivariate model, at the very least, in which both accuracy
and solution time are simultaneously accounted for as outcomes
(for more detail on the SCM specifications for relations between
solution time and accuracy, see, e.g., Siegler, 1991, 1996; Siegler
& Robinson, 1982; Siegler & Shrager, 1984; Siegler & Taraban,
1986).

The Current Study

In the current study, we used an EIRT framework to provide the
first simultaneous evaluation of both problem and person effects
predicated by the SCM. We focused on problem solving in addi-
tion because variation in the associated strategy choices are well
characterized across problems and individuals. Moreover, we fo-
cused on adolescents’ problem solving, which is surprisingly un-
derstudied. More practically, we evaluated the EIRT model for its
capacity to (a) identify struggling adolescent problem-solvers and
(b) demonstrate convergent and discriminant validity with mea-
sures of broad mathematics and reading achievement.

Method

Participants

Participants were 376 (224 female) adolescents (M � 15.05,
SD � 1.45, range � 11 to 18 years) drawn from a longitudinal
twin study conducted in the Midwestern United States, which was
approved by The Office of Responsible Research Practices at The
Ohio State University (Petrill, Deater-Deckard, Thompson, De-
Thorne, & Schatschneider, 2006). The parent study is examining
the genetic and environmental predictors of reading and mathe-
matics skill development. Participants were initially recruited
largely via school nominations of families with twins in kinder-
garten or 1st grade. Throughout the Greater Cleveland, Columbus,
and Cincinnati metropolitan areas in Ohio and in Western Penn-
sylvania, participating schools (n � 273) forwarded study infor-
mation to eligible families. Additional families were recruited via
birth records, twin family clubs, and media advertisement. Those
families who expressed interest in the study were contacted by
telephone and, if interested in participation, mailed a consent letter
and demographic questionnaire requesting demographic informa-
tion. Once consent and the initial demographic survey were re-
turned, participants assented and were assessed in their homes
approximately once annually over 10 waves.

The data for these analyses come from the ninth measurement,
which was one of three waves focused intensively on mathematical
skill development. Wave 9 included measures of arithmetic strat-
egy usage and its associated cognitive predictors. The sample for
the current study was largely White (90%) and middle-class (the
majority of participating families were in two-parent households in
which both parents had obtained 4-year college degrees). Though
participants ranged from 5th to 12th grade, most were in middle-
school (65% were between 7th and 10th grades), and few had
identified disabilities (7%; mostly related to ADHD and/or
learning difficulties). Participant demographics are displayed in
Table 1.

Measures

Addition strategy. Thirty addition items that varied in diffi-
culty (based on addend size) were created based on Geary and
colleagues’ (2004) addition strategy assessment. Participants were
shown addition problems one at a time on a computer. Addition
Items 1 through 14 contained two single digit addends (e.g., 3 �
6); Addition Items 15 through 20 contained one single digit addend
and one double digit addend (e.g., 16 � 7); and Addition Items 21
through 30 contained two double digit addends (e.g., 13 � 24). All
participants were shown the same items in the same order.

Problems were presented one at a time on the center of a
computer screen. Participants were asked to solve each problem as
quickly and accurately as possible. When the participant said the
answer aloud, the examiner pressed the space bar on the computer
to measure the solution time. Prior work has suggested that inter-
viewing is both a valid and efficient way to obtain information
about strategy usage (Siegler, 1987b), and so once a participant
answered the problem they were asked “How did you figure out
the answer to that problem?” Participant responses were audio
recorded. Two trained research assistants independently reviewed
audio recordings and coded participants’ strategy responses into
several applicable categories using Geary and colleagues’ (2004)
coding scheme. The independently rated strategy codes were then
compared for agreement. In the event of coding disagreements, the
two raters met, reviewed the audio recordings, and discussed the
coding scheme until consensus could be reached. In the event that
this consensus meeting still resulted in a coding disagreement, a
senior researcher met with both raters to discuss codes and arrive
at consensus. Thus all strategy responses in the current study were
the result of 100% agreement between a minimum of two inde-
pendent raters.

Table 1
Participant Demographics on Categorical Variables

Variable and category Frequency Percentage

Gender
Male 152 40
Female 224 60

Grade
Not answered 54 14

5 4 1
6 22 6
7 32 9
8 80 21
9 90 24
10 42 11
11 40 11
12 12 3

Race
Not answered 4 1
Asian/Asian American 8 2
African American/Black 18 5
Hispanic 2 1
European American/White 338 90
Other 6 2

Current IEP
Not answered 120 32
No 229 61
Yes 27 7

Note. IEP � individual education plan.
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On items in which there were two single digit addends or one
single digit addend and a double-digit addend, participants re-
ported using a counting (either with their fingers or verbally),
decomposition (breaking the problem into smaller parts), or re-
trieval strategy (remembering the answer). The counting strategies
were further categorized based on whether the participant reported
counting both addends (sum), the largest addend (max), or the
smallest addend (min). For the double digit problems, participants
typically reported using an algorithm (adding the ones and then
adding the tens), in keeping with process models of complex
arithmetic (Geary et al., 1987; Widaman, Geary, Cormier, & Little,
1989). Thus, the task results in three features of problem solving:
solution times (s), accuracy (correct � 1, incorrect � 0), and
self-reported strategy. Descriptive statistics for participants’ accu-
racies and solution times can be found in Table 2, and Table 3
presents accuracies and solution times by participants’ most fre-
quently used strategies. The pattern of solution times, with re-
trieval being the fastest, followed by decomposition and counting
are consistent with previous studies (Geary et al., 2012; Siegler,
1987b) and suggests the self-reports provided a valid measure of
how the problems were solved (see the Results section).

Mathematical ability. Mathematics ability was assessed with
three subtests of the Woodcock-Johnson III Tests of Achievement
(McGrew & Woodcock, 2001). The Calculation subtest assessed
children’s ability to computationally solve a variety of mathemat-

ics problems. These included addition, subtraction, multiplication,
and division computations, along with problems that included
combinations of these operations. Computations included negative
numbers, percentages, decimals, fractions, and whole numbers.
Published median internal consistency reliability for this test is .85
in the 5- to 19-year-old age range; for this sample, � � .84. The
Applied Problems subtest assessed ability on math story problems.
Children completed a series of story problems presented visually
and read aloud, requiring them to use a variety of math operations
in order to solve questions of increasing difficulty. The published
median reliability of this task is .92 in the 5- to 19-year-old age
range; for this sample, � � .83. The Math Fluency subtest assessed
ability to solve single digit addition, subtraction, and multiplica-
tion items in a timed setting. Participants had 3 min to complete as
many problems as they could out of a set of 160 items. The
published median reliability for this test is .89 for the 7- to
19-year-old age range; for this sample, � � .88. Using Com-
puscore software, standard scores for each math subtest were
generated for each subtest, and the scores from these three subtests
were combined into a broad math composite score.

Reading ability. Reading ability was assessed with the two
subtests of the Test of Word Reading Efficiency (Torgesen, Wag-
ner, & Rashotte, 1999). In Sight Word Efficiency, participants read
a list of real words printed in vertical lists. Similarly, in Phonemic
Decoding Efficiency, participants read a list of pronounceable

Table 2
Item Descriptives for Accuracy and Solution Time Across All Strategies Used

Item no. Content

Accuracy Solution time Correlations

M SD M SD Range Acc. & Total Sol. Time & Total Acc. & Sol. Time

1 3 � 6 .99 .09 1.65 .61 .850–4.988 .06 �.23��� .04
2 5 � 3 .98 .13 1.64 .81 .828–8.746 .24��� �.24��� �.06
3 7 � 6 .94 .24 3.04 1.71 .987–13.703 .19��� �.19��� �.01
4 3 � 5 1.00 0 1.58 1.05 .791–14.224 — �.34��� —
5 8 � 4 .97 .16 1.98 1.01 .808–6.007 .05 �.20��� �.14�

6 2 � 8 .99 .09 1.49 .56 .628–5.452 .02 �.28��� .002
7 9 � 7 .97 .17 2.71 1.90 .962–18.331 .24��� �.16�� �.16��

8 2 � 4 .98 .15 1.58 .52 .757–3.884 .16�� �.25��� �.06
9 9 � 5 .96 .20 2.46 3.22 1.028–51.884 .33��� �.19��� �.12�

10 7 � 2 .97 .16 1.69 .69 .851–6.233 .19��� �.19��� �.04
11 9 � 8 .97 .17 2.62 1.77 1.006–14.032 .35��� �.25��� �.20���

12 4 � 7 .93 .25 2.61 1.31 .904–8.242 .28��� �.16�� �.06
13 2 � 5 .98 .14 1.72 .75 .869–7.274 .17�� �.19��� �.07
14 3 � 9 .98 .13 2.07 .83 .977–6.274 .04 �.19��� .04
15 16 � 7 .90 .31 5.47 4.06 1.220–53.355 .33��� �.07 �.09
16 3 � 18 .96 .19 2.58 1.19 1.076–9.545 .31��� �.15�� �.12�

17 9 � 15 .94 .23 4.69 2.99 1.293–28.387 .31��� �.20��� �.04
18 17 � 4 .97 .18 3.06 1.91 .570–18.675 .20��� �.18�� .003
19 6 � 19 .93 .26 4.08 3.32 1.391–42.894 .38��� �.16�� �.08
20 14 � 8 .92 .26 4.70 2.99 1.199–21.481 .17��� �.22��� �.13�

21 13 � 24 .93 .25 5.39 3.38 1.637–34.318 .34��� �.24��� �.09
22 17 � 75 .80 .40 9.67 6.58 2.524–45.589 .46��� �.16�� .03
23 26 � 15 .92 .28 6.79 5.31 1.220–43.374 .44��� �.14� �.07
24 13 � 17 .92 .27 4.44 4.80 1.227–74.031 .35��� �.15�� �.11�

25 62 � 27 .90 .30 6.36 4.64 1.826–38.406 .39��� �.34��� �.18���

26 25 � 33 .93 .26 5.47 3.96 1.725–35.335 .33��� �.33��� �.20���

27 24 � 18 .89 .32 7.90 6.84 1.357–52.640 .45��� �.12� �.23���

28 23 � 38 .90 .29 7.62 6.04 2.121–89.657 .34��� �.22��� �.14�

29 65 � 28 .83 .37 10.78 10.17 2.369–129.736 .51��� �.18��� �.13�

30 38 � 36 .88 .33 9.17 7.75 2.693–117.222 .30��� �.13� �.06

Note. Acc. � accuracy; Sol. � solution.
� p � .05. �� p � .01. ��� p � .001.
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Table 3
Item Descriptives for Accuracy and Solution Time for Most Frequent Strategies Used

Item Frequency strategies Solution time Accuracy

No. Content n Strategy n M SD Range n M SD

1 3 � 6 277 Retrieve 257 1.505 .422 .850–3.427 277 .993 .085
67 Min count 62 2.204 .913 .984–4.988 67 .985 .122
9 Count other 7 1.717 .290 1.295–2.044 9 1.000 0

2 5 � 3 277 Retrieve 257 1.420 .477 .828–4.924 277 .993 .085
85 Min count 80 2.341 1.201 .949–8.746 85 .953 .213
8 Decompose 7 1.471 .326 1.215–2.055 8 1.000 0

3 7 � 6 160 Decompose 150 3.221 1.477 1.292–9.498 160 .962 .191
125 Retrieve 115 2.029 1.160 .987–9.222 125 .912 .284
80 Min count 73 4.265 2.015 1.407–13.703 80 .938 .244

4 3 � 5 303 Retrieve 280 1.369 .396 .791–3.483 303 1.000 0
57 Min count 53 2.622 2.219 1.030–14.224 57 1.000 0
8 Decompose 8 1.492 .491 1.079–2.403 8 1.000 0

5 8 � 4 180 Retrieve 168 1.514 .519 .808–3.828 180 .983 .128
89 Min count 84 2.944 1.157 1.220–5.982 89 .966 .181
79 Decompose 75 1.971 .957 .934–6.007 79 .962 .192

6 2 � 8 308 Retrieve 286 1.383 .427 .628–3.792 308 .990 .098
56 Min count 51 2.040 .835 .996–5.452 56 1.000 0
4 Count other 4 1.966 .515 1.232–2.436 4 1.000 0

7 9 � 7 221 Decompose 201 2.441 1.034 1.204–7.065 221 .986 .116
84 Retrieve 80 1.769 .630 .962–5.297 84 .952 .214
64 Min count 61 4.523 2.776 1.596–14.625 64 .938 .244

8 2 � 4 296 Retrieve 275 1.487 .428 .757–3.884 296 .986 .116
52 Min count 49 1.973 .620 1.021–3.857 52 .962 .194
9 Count other 8 1.678 .776 1.013–3.498 9 1.000 0

9 9 � 5 199 Decompose 180 2.031 1.187 1.133–15.429 199 .990 .100
101 Retrieve 96 1.651 .487 1.028–4.024 101 .960 .196
67 Min count 65 4.807 6.652 1.357–51.884 67 .881 .327

10 7 � 2 250 Retrieve 231 1.541 .541 .851–5.390 250 .984 .126
105 Min count 101 2.037 .867 1.143–6.233 105 .943 .233
14 Decompose 12 1.782 .614 1.042–3.116 14 1.000 0

11 9 � 8 215 Decompose 196 2.378 .995 1.019–7.331 215 .995 .068
100 Retrieve 95 1.753 .541 1.006–3.754 100 .980 .141
48 Min count 46 5.176 3.003 1.506–14.032 48 .833 .377

12 4 � 7 133 Retrieve 123 1.875 .831 .904–6.400 133 .947 .224
124 Decompose 114 2.663 1.196 1.211–8.242 124 .935 .247
108 Min count 102 3.383 1.385 1.348–7.768 108 .907 .291

13 2 � 5 278 Retrieve 257 1.573 .622 .869–7.274 278 .986 .119
87 Min count 81 2.125 .870 1.065–6.945 87 .966 .184
5 Decompose 5 1.397 .196 1.167–1.666 5 1.000 0

14 3 � 9 145 Decompose 130 2.144 .748 1.068–4.943 145 .979 .143
137 Retrieve 129 1.706 .564 .977–3.788 137 1.000 0
70 Min count 68 2.499 .921 1.290–5.476 70 .971 .168

15 16 � 7 221 Decompose 202 5.357 4.755 1.417–53.355 221 .910 .288
132 Min count 125 5.766 2.717 1.750–20.275 132 .894 .309
10 Retrieve 10 2.897 2.347 1.220–9.272 10 .900 .316

16 3 � 18 173 Decompose 157 2.478 1.059 1.076–6.059 173 .960 .198
129 Min count 121 3.091 1.377 1.469–9.545 129 .953 .211
68 Retrieve 66 1.919 .554 1.154–3.975 68 .985 .121

17 9 � 15 251 Decompose 231 4.147 2.847 1.293–28.387 251 .964 .186
96 Min count 92 6.179 2.614 2.037–16.023 96 .917 .278
14 Retrieve 13 2.118 .823 1.387–4.220 14 .786 .426

18 17 � 4 207 Decompose 188 2.905 1.475 1.180–10.124 207 .971 .168
110 Min count 104 3.811 2.513 .570–18.675 110 .936 .245
52 Retrieve 50 1.976 1.004 1.131–7.911 52 1.000 0

19 6 � 19 243 Decompose 222 3.840 3.769 1.391–42.894 243 .955 .208
98 Min count 93 4.990 1.945 1.763–13.176 98 .878 .329
27 Retrieve 26 2.577 1.913 1.417–11.123 27 .926 .267

20 14 � 8 230 Decompose 212 4.399 2.785 1.199–21.481 230 .930 .255
105 Min count 98 5.963 3.266 2.125–17.252 105 .895 .308
28 Retrieve 27 2.247 .971 1.254–5.801 28 1.000 0

21 13 � 24 174 Algorithm 159 5.535 3.073 1.963–20.775 174 .914 .281
167 Decompose 159 4.564 2.095 1.637–13.291 167 .970 .171
24 Min count 22 8.202 3.996 3.381–21.868 24 .833 .381

22 17 � 75 185 Decompose 177 8.180 4.836 2.524–37.224 185 .811 .393
160 Algorithm 144 10.309 6.686 2.628–43.122 160 .800 .401
19 Min count 17 18.601 10.019 8.602–45.589 19 .737 .452

(table continues)
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nonwords. In each subtest, the total number of words correctly
read within 45 s was recorded as the raw score. These raw scores
were summed and a total word reading efficiency standard score
was calculated for each child. Published average test–retest reli-
ability coefficients, across age intervals, for both subtests and the
total were .93 to .96; for this sample, � � .75 and .74 for Sight
Word Efficiency and Phonemic Decoding, respectively.

Demographic survey. The surveys included questions about
home environment, school grades and grade-levels, behavioral
problems, and current disability diagnoses and psychological prob-
lems, as well as race, income and related information. The ques-
tionnaires were collected during home visits. If a family had not
had time to complete the survey, an additional survey was mailed
with a prestamped envelope. This survey was completed and
returned for 254 participants (68%) in the current study.

Procedures

Data collection. Teams of two trained research assistants ad-
ministered a 3-hr cognitive battery to the twin participants in their
homes. These assessments were conducted one-on-one in quiet
spaces within the home with allowances for testing breaks as
needed. Twins were assessed by separate examiners in separate
rooms throughout the visit.

Data analyses. Analyses examined a series of EIRT models in
which responses to addition strategy items were nested in both
items and persons. However, modeling the nonindependence of
twin data was not the focus of the current study, and controlling for
this highest level of dyadic clustering was not possible with
available software. Therefore, twin pairs were split into random
singletons using random number generation in SAS Version 9.3
(SAS Institute Inc., 2011). These two data sets were analyzed
independently such that the second set of singletons was used to
examine the replicability results of the EIRT models.

Analyses began with an examination of frequencies and descriptive
statistics for outcomes across the most frequently used strategies to
solve the 30 presented problems; that is, min-counting, decomposi-
tion, retrieval, and addition algorithm. Next, a series of EIRT models
in which both item and person differences were specified to explain
relationships between adolescents’ strategy choices and their solution
times and accuracy. These EIRT models were examined using Bayes-
ian estimation in Mplus 7 (Muthén & Muthén, 2012). Missing out-
come data were estimated using full information maximum likelihood
estimation (see e.g., Enders & Bandalos, 2001) in Mplus 7 (Muthén
& Muthén, 2012). By default in Mplus 7, missing exogenous predic-
tors were subject to listwise deletion. Finally, EIRT models parame-
ters were examined descriptively for individual differences (in items
and persons) and using regression analyses for convergent and dis-
criminant validity (Campbell & Fiske, 1959) with measures of broad
academic achievement.

Results

Frequencies and Descriptive Statistics for Outcomes

One would expect to see less variation in adolescents’ than
children’s arithmetic performance. Indeed, there were ceiling ef-
fects for accuracy across addition items and problem-solving strat-
egies (mean accuracy ranged from .80 to 1.00; see Table 2).
However, consistent with SCM, across both items and persons,
there was considerable variance in solution time (solution times
ranged from .57 to 129.74 s; see Table 2) and strategy choices
(strategy choices ranged from developmentally immature sum-
counting to more advanced fact retrieval; see Table 3).

In general, solution times tended to increase as problem sizes
increased. Problem-solvers were fastest on single digit items,
followed by mixed digit items. They were slowest on double digit

Table 3 (continued)

Item Frequency strategies Solution time Accuracy

No. Content n Strategy n M SD Range n M SD

23 26 � 15 181 Decompose 173 5.785 3.676 1.220–25.688 181 .934 .249
161 Algorithm 145 7.511 6.147 1.991–43.374 161 .919 .273
16 Min count 14 11.291 7.994 4.269–37.328 16 .875 .342

24 13 � 17 199 Decompose 189 3.763 2.385 1.263–24.625 199 .930 .256
122 Algorithm 109 5.004 3.820 1.843–28.582 122 .893 .310
24 Retrieve 23 2.358 .648 1.227–3.759 24 1.000 0

25 62 � 27 188 Algorithm 170 6.118 4.216 1.926–33.733 188 .899 .302
163 Decompose 156 5.854 3.678 1.826–31.132 163 .920 .272
12 Min count 11 15.729 8.869 6.209–38.406 12 .750 .452

26 25 � 33 186 Algorithm 168 5.109 2.928 1.725–20.181 186 .941 .237
168 Decompose 160 5.277 3.645 1.725–24.063 168 .935 .248
10 Min count 9 14.771 9.696 4.241–35.335 10 .700 .483

27 24 � 18 187 Decompose 180 6.503 4.611 1.958–45.689 187 .930 .255
161 Algorithm 146 8.813 7.211 1.357–49.555 161 .863 .345
14 Min count 13 18.106 15.079 4.336–52.640 14 .714 .469

28 23 � 38 181 Algorithm 162 7.810 4.342 2.308–31.474 181 .912 .285
176 Decompose 168 6.690 3.451 2.121–19.905 176 .909 .288
10 Min count 9 21.967 25.786 6.439–89.657 10 .700 .483

29 65 � 28 188 Decompose 178 8.579 4.682 2.369–27.367 188 .872 .335
164 Algorithm 149 11.793 9.492 2.609–85.214 164 .817 .388
11 Min count 10 34.864 34.934 7.915–129.736 11 .545 .522

30 38 � 36 190 Decompose 182 7.868 3.972 2.922–30.506 190 .879 .327
164 Algorithm 147 9.724 5.801 2.693–32.761 164 .902 .298

6 Min count 6 31.556 42.660 6.018–117.222 6 .833 .408
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items. As expected, the retrieval strategy was the most rapid (M �
1.60 s, SD � .67 s), followed by decomposition (M � 4.54 s, SD �
3.67 s), min-counting (M � 4.70 s, SD � 6.60 s), and addition
algorithm strategies (M � 7.76 s, SD � 6.09 s), respectively.

Even among these adolescent problem-solvers, overt counting,
especially min-counting, was still common; 20% of simple (e.g.,
4 � 6), 30% of mixed (e.g., 17 � 5), and 44% of double (e.g.,
26 � 15) problems were solved at least once with min-counting.
Some adolescents also reported use of other counting strategies
(e.g., fingers and sum-counting), but with relatively low frequency.
Across items, the most frequent strategies used were retrieval,
decomposition, min-counting, and addition algorithm depending
upon item type (i.e., single digit vs. double digit). Retrieval strat-
egies were especially frequent on single digit addition items
(54%); addition algorithm strategies were highly frequent on dou-
ble digit items (44%); decomposition and min strategies were used
across all items.

Explanatory Item Response Theory Models

The “build-up” approach. Multilevel models are typically
evaluated using a “build-up” approach (De Boeck & Wilson, 2004;
Raudenbush & Bryk, 2002). An “empty” model (with no person-
level or item-level predictors, only intercepts) is evaluated first.
Predictors are added only in subsequent models, after the baseline
model has been evaluated.

In a baseline model of the SCM, one could imagine that every
item may have a unique level of difficulty (likelihood of being
correctly answered) and every person may have a unique ability
(likelihood of correctly answering). This is the concept of a “ran-
dom intercept.” The baseline EIRT model would allow for items to
have different difficulties (random intercepts at item-level) and
persons to have different abilities (random intercepts at person-
level). Alternatively, if item difficulties and person abilities are the
same across all items and persons, then the random intercepts
reduce to standard regression intercepts. Similarly, random inter-
cepts for solution times would be included in such a baseline
model, and because models are evaluated with bivariate outcomes,
covariances between solution time and accuracy intercepts would
be evaluated.

A subsequent model would allow for the estimation of the effect
of strategy usage on solution time and accuracy. The effect of
strategy usage also might differ for different items and different
persons. This is the concept of a random slope: the effect of
strategy might be higher or lower than the average, both for
persons and for items. Min-counting, for example, on some items
might be more costly than it would be on other items (i.e., taking
longer or decreasing accuracy), and likewise, min-counting for
some persons might be more costly than it would be for other
persons (i.e., increasing solution time or decreasing the likelihood
of producing a correct answer). Alternatively, if the effect of
strategy is constant, then the random slope effect reduces to a
standard regression.

Accordingly, models were built in the following sequence:
Model 1 was the baseline and was concerned with significant
variance in random intercepts (i.e., the extent to which variance in
outcomes, solution time and accuracy, could be explained by both
item and person levels). Specifically, the baseline model examined
the hypotheses that (a) items varied significantly from each other,

(b) persons varied significantly from each other, and (c) in both
solution times and accuracies. Given that accuracy demonstrated
ceiling effects for this population, the extent to which items and
persons might significantly vary from one another in accuracy was
of particular concern in evaluating the baseline model.

Model 2 built upon Model 1 with the addition of random slopes
for the use of the min-counting strategy; other strategies could
have been modeled here, and min-counting was selected because it
was frequently used across all addition problem types. Further-
more, because min-counting was the least sophisticated among the
frequently used strategies, we anticipated that it might be useful for
identifying adolescents who were struggling with mathematics.
Model 2 estimated the extent to which the use of min-counting
differed across both items and persons. This model included vari-
ance in random slopes, that is the extent to which of min-counting
(vs. all other strategies) predicted solution time and accuracy
across both items and persons. In subsequent analyses, item and
person factor scores estimated from Model 2 were used to assess
convergent validity with measures of broad math achievement, and
discriminant validity with measures of reading ability. Table 4
presents a summary of results for all models, and Figures 1 and 2
display model schematics. Model equations are presented in Ap-
pendix A.

Model 1: Random intercepts only. The baseline model in-
dicated significant variance in solution time and accuracy at both
item and person levels.

Significant variance in solution time. Across items and per-
sons, solution times varied by about 3 s on average (residual
variance, �ip

2 � 10. s2, �ip � 3.19 s, p � .001). Items varied
significantly in their solution times (item solution time intercept
standard deviation, �0i � 2.79 s, p � .001). People varied signif-
icantly in their solution times (person solution time intercept
standard deviation, �0p � 1.80 s, p � .001), but the average person
took approximately 4 s to solve the average item (person solution
time grand mean, γ00 � 4.48, p � .001). Thus, results from the
baseline model indicated that both item- and person-level variance
contributed to variance in solution times, justifying use of random
intercepts. Collapsing across items (e.g., interpreting an average
solution time mean for “simple addition problems”) or collapsing
across people (e.g., interpreting only a mean score for “adoles-
cents”) would be ignoring important sources of variance. This
variance is commonly quantified by calculating an intraclass cor-
relation (ICC) for a baseline, random intercept only model
(Raudenbush & Bryk, 2002). ICCs were calculated as follows
(note that all model parameters, represented here with Greek
characters, are defined in Appendix A):

ICCitems �
�0i

2

�0i
2 � �0p

2 � �ip
2 � 7.794

7.794 � 3.223 � 10.169 � .3679

Thus, approximately 37% of the variance in solution times was
accounted for by differences between items, and

ICCpersons �
�0p

2

�0i
2 � �0p

2 � �ip
2 � 3.223

7.794 � 3.223 � 10.169 � .1521

approximately 15% of the variance in solution times was ac-
counted for by differences between people.

Significant variance in accuracy. Mplus 7 does not allow for
the estimation of categorical outcomes at the within-level of cross-
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classified models (in this study, the within-level is solution time
and accuracy responses, fully cross-classified in items and per-
sons); thus, estimating residuals for response accuracy was not
possible (within-level residual variance is constrained equal to 1,
as is conventional in probit regression). However, estimation of
variance in accuracy was possible at item and person levels. Items
varied significantly in their predicted accuracy (item accuracy
intercept variance, �0i

2 � .23, p � .001). People varied significantly
in their predicted accuracy (person accuracy intercept variance,
�0p

2 � .24, p � .001), but the average person had a .97 probability
of correctly solving the average item (person accuracy threshold,
γ00 � �1.82, p � .001). Thus, results from the baseline model
indicated that both item- and person-level variance contributed to
variance in accuracy, justifying the use of random intercepts.
Collapsing across items or across people would be ignoring im-
portant sources of variance. Approximately 16% of the variance in
accuracy was accounted for by differences between items, and
approximately 16% of the variance in accuracy was accounted for
by differences between people.

Model 1 was re-examined for replicability using the second sample
of random twin partners (singletons). Results for the second sample
were largely consistent with those from the first. Results from repli-
cability model testing are available in Appendix B.

Model 2: Random intercepts and random slopes for
min-counting. The model indicated that both random intercepts
and random slopes for min-counting had significant variance in
solution time and accuracy at both item and person levels.

Significant variance in solution time. Across items and peo-
ple, solution times varied by about 3 s on average (residual variance,
�ip

2 � 8.84 s2, �ip � 2.97 s, p � .001). Items varied significantly in
their solution times (item solution time intercept standard deviation,
�0i � 2.42 s, p � .001). The use of min-counting varied in its effect
on item solution times (item solution time slope standard deviation,
�1i � 3.70 s, p � .001). Note that solution times and the effects of
min-counting on solution times are linearly related. For items, this
relation is described by the covariance term �10i � 7.34, or, in the
more familiar r � .81. In other words, items that took longer to solve
overall tended to take even longer to solve if min-counting strategy

was used. These results indicated that both a random intercept and a
random slope for min-counting captured significant variance (and
covariance) at item-level.

People also varied significantly in their solution times (person
solution time intercept standard deviation, �0p � 2.37 s, p � .001), but
on average, across all strategies used, people took approximately 4 s
to solve each problem (person solution time grand mean, γ00 � 4.15,
p � .001). The overall effect of min-counting (relative to the use of
noncounting strategies such as retrieval) was about a 3 s increase in
solution times (person solution time slope mean, γ10 � 2.59, p �
.001). However, the use of min-counting strategies varied signifi-
cantly across people (person solution time slope standard deviation,
�11 � 1.90 s, p � .001), meaning there was significant variation in
adolescents’ efficiency of using min-counting. Interestingly, the sig-
nificant covariance between the random intercept and slope
(�10p � �4.02; in the more familiar standardized form, r � �.89, p �
.001) indicates that people who were slower overall were relatively
fast when using the min strategy, whereas people who were faster
overall tended to be slower when using min-counting. Taken together,
the significant variance in random slopes for min-counting indicated
that use of this strategy accounted for significant variance in solution
times across items and persons.

Significant variance in accuracy. Both a random intercept
and a random slope for min-counting captured significant variance
in accuracy at the item-level. Items varied significantly in their
predicted accuracy (i.e., their difficulty; item accuracy intercept
variance, �0i

2 � .25, p � .001). Items also differed in the probability
that use of min-counting would yield the correct answer (item
accuracy slope variance, �1i

2 � .19, p � .001). However, item
difficulty and the probability of generating the correct answer
using min-counting were not significantly related (�10i � .05, or,
in the more familiar r � .22, p � .22). In other words, although the
likelihood of generating a correct response using min-counting
varied across items, this was unrelated to item difficulty.

People also varied significantly in their accuracy (person accu-
racy intercept variance, �0p

2 � .22, p � .001), but the average
person had a .97 probability of correctly solving the average item
(person accuracy threshold, γ00 � �1.90, p � .001). Overall, for

Table 4
All Models Tested: Model Coefficient Parameters for Random and Fixed Effects

Effects

Model 1 Model 2

Solution time Accuracy Solution time Accuracy

Person random effects
Intercept/threshold 4.48 (.46) �1.82 (.11) 4.15 (.37) �1.90 (.08)
Intercept variance 3.22 (.39) .24 (.05) 5.63 (.68) .22 (.05)
Slope (the effect of counting) 2.59 (.57) � .25 (.15)
Slope variance 3.61 (.59) .28 (.15)

Item random effects
Intercept variance 7.79 (2.58) .23 (.08) 5.86 (1.67) .25 (.09)
Slope variance 13.61 (4.18) .19 (.10)

Error variance 10.17 (.21) 1.00 (fixed) 8.84 (.18) 1.00 (fixed)
Model fit

Free parameters 7 25

Note. The scales of solution time and accuracy are based on solution time and model probit metrics (similar
to z-scores). Higher solution times mean slower problem-solving. Higher accuracy values mean higher likeli-
hoods of a correct answer (i.e., easier items or more skilled problem solvers). Model covariance parameters of
interest are presented and discussed in text.
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the average person, the use of min-counting did not significantly
impact the likelihood of a correct answer relative to use of other
strategies (person accuracy slope mean, γ10 � �.25, p � .07).
However, there were still significant individual differences in
accuracy when using min-counting (person accuracy slope vari-
ance, �1p

2 � .28, p � .001). A nonsignificant covariance between
the random intercept and slope (�10p � �.01; in the more familiar
r � �.03, p � .43) indicated that people who were less accurate
overall were just as inaccurate when using min-counting; that is,
they were just as likely to commit an error using min-counting as
they were to commit an error using any other strategy.

Model 2 was reexamined for replicability using the second
sample of random singletons. Again, the results were largely

consistent with these results (see Appendix B). Similarly, an
additional model including age as a fixed person effect was
evaluated (i.e., controlling for age). Not surprisingly, older
adolescents solved problems slightly faster than younger ado-
lescents and tended to be slightly less efficient if using min-
counting. All other model parameters demonstrated the same
trends at similar magnitudes. Furthermore, despite the introduc-
tion of four additional free parameters for age effects, the model
residual variances did not appreciably reduce, suggesting that
this additional model complexity did not improve model esti-
mates (95% CI [8.50, 9.20] and 95% CI [8.50, 9.17] for Model
2 and Model 2 with age, respectively). Thus, because the
specification of item and person-level effects was beyond the

Figure 1. Explanatory item response theory Model 1 schematic. See the Technical Appendices for a full
explanation of model symbols and equations. Note that this simple model schematic does not display the full,
bivariate model under consideration (i.e., the schematic demonstrates the cross-classified mixed effects nature
of the model in the current study; however, both solution time and accuracy responses are not displayed along
with associated model covariance parameters).T
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scope of the current study, only the general Model 2 (across the
adolescent stage of development) is presented here.

Examining EIRT Model Parameters for Individual
Differences in Min-Counting

The average person could solve the average item in approxi-
mately 4.15 s with a probability of success � .97. These estimates
are the EIRT intercept fixed effects, and they represent the typical
adolescent performance on the addition problems across all strat-
egies. However, both item and person intercepts had significant
variance around these averages (i.e., significant random variance).

Similarly, the typical adolescent using a min-counting strategy
took an average of 2.59 s longer to solve the average item, and on
average, the use of min-counting did not compromise accuracy
(probability of correct response � .95). These estimates are the
EIRT slope fixed effects for the use of min-counting. However,
again, there was significant variance in these slopes for both items
and persons (i.e., significant random slope effects).

To demonstrate the utility of the EIRT modeling approach for
capturing individual differences in problem-solving, factor scores
(representing deviations from these averages) were considered
with respect to both items and persons. Individual differences in

Figure 2. Explanatory item response theory Model 2 schematic. See the Technical Appendices for a full
explanation of model symbols and equations. Note that this simple model schematic does not display the full,
bivariate model under consideration (i.e., the schematic demonstrates the cross-classified mixed effects nature
of the model in the current study; however, both solution time and accuracy responses are not displayed along
with associated model covariance parameters).T
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item and person intercepts and slopes are considered, and extreme
cases (representing individual persons and items for which model
predicted effects were very different from peers) are highlighted in
the sections that follow.

Individual differences in item intercepts. Scatter plots of
item intercepts for the 30 addition problems are shown in Figure 3A
(solution time) and 3B (accuracy). To illustrate, across persons, Items
22 (17 � 75) and 29 (65 � 28) were the most difficult. Item 22 had
the second highest average solution time of 9.61 s and had the lowest
average likelihood of correct response (probability � .82). Item 29
had the highest average solution time of 10.28 s and had the second
lowest probability of a correct response (probability � .87). Con-
versely, Items 1 (3 � 6) and 2 (5 � 3) were the easiest items to solve
(with averages of 2.23 s to solve and probability of success � .99, and
2.18 s and probability of success � .99, respectively).

Individual differences in item slopes. Figure 3C and 3D
display scatter plots of item slopes for solution time and accuracy,
respectively. In general, using min-counting was particularly mal-
adaptive as problem sizes increased. For example, min-counting
was a particularly poor choice for Item 29 (65 � 28), one of the
most difficult problems on the assessment. Use of min-counting to

solve this problem increased solution times by an average of 14.61 s
with a probability of success � .56.

Individual differences in person intercepts. Figure 4A and
4B display intercepts for person-level solution time and accuracy,
respectively. In general, most people were within two standard
deviations of the average solution time and the average probability
of success. However, there were several adolescents who took
significantly longer than average to solve problems (deviated from
average solution time by more than 2.5 SDs), and there were
several adolescents who were significantly less likely to solve
problems correctly (deviated from average accuracy by more than
2.5 SDs). For example, Participants 81 and 412 took an average of
22.85 s and 19.84 s, respectively, to solve the average problem.
Participants 409 and 717 had an average probability of success,
p � .74 and p � .75, respectively. Given the significant covariance
between solution time and accuracy, it was not surprising that
many of the slower adolescents were also the less accurate ones.
For example, Participant 412 had a significantly lower than aver-
age probability of success, p � .80. Though there was significant
variance among the typically performing participants, adolescents
with these more extreme performances may have represented a

Figure 3. Item intercepts and slopes for solution time and accuracy. Items 1 to 14, inclusive are problems with
single-digit addends (e.g., 5 � 3); Items 15 to 20, inclusive are problems with one single-digit and one
double-digit (e.g., 15 � 7); problems 21 to 30, inclusive, are problems with two double-digit addends (e.g., 23 �
54). See the online article for the color version of this figure.
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different population of problem-solver. The model predicted ef-
fects for using min-counting had significant implications for these
adolescents and are considered next.

Individual differences in person slopes. Although most ad-
olescents were not predicted to benefit from using min-counting in
place of other strategies, some did. Figures 4C and 4D display
individual differences for person-level min-counting slopes for
solution time and accuracy, respectively. Figure 5 displays the
bivariate distributions of min-counting effects. For most partici-
pants, use of min-counting was associated with longer solution
times and more errors. For example, Participant 148 was slowed
by min-counting an average of 3.82 s, and probability of success
was reduced from p � .994 to p � .989. Most participants
followed this pattern and used min-counting rather infrequently.

However, for some adolescents, the use of min-counting was
predicted to be extremely beneficial for solution time alone (n � 9),
and for other adolescents min-counting was predicted to be extremely
beneficial for both solution time and accuracy (n � 8). Thus, these 17
adolescents were model predicted to experience extreme min-

counting benefits, deviating substantially from their peers. For exam-
ple, both of the slowest participants (Participants 81 and 412 men-
tioned above) were predicted to benefit from min-counting, reducing
their average solution times by 10.47 s and 7.38 s, respectively. For
both of these participants, min-counting was also predicted to signif-
icantly increase accuracy (e.g., from .91 to .99 for Participant 81).

Differences between model predicted “min-benefiters” and
their peers. Surprisingly, those adolescents who were model
predicted to benefit the most from min-counting used this strategy
significantly less often than their peers (t(186) � �4.51, p �
.001), suggesting maladaptive strategy choices.1 The benefits of
min-counting emerged because it is developmentally advanced
compared to the counting strategies otherwise used by these stu-
dents, for example, sum counting, finger counting, max-counting;
t(186) � 5.80, p � .001. Put another way, those adolescents for

1 Because multiple pairwise comparisons were considered, all reported
t-test results represent the Tukey-Kramer adjusted values.

Figure 4. Person intercepts and slopes for solution time and accuracy. See the online article for the color
version of this figure.
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whom the EIRT model predicted extreme beneficial effects of
min-counting tended to rely on the especially immature (given
their age) sum and max counting strategies and even finger count-
ing to solve addition problems, whereas their peers rarely used
these strategies.

Importantly, the model-predicted “min-benefiters” scored sig-
nificantly lower than their peers in their broader mathematics
achievement. These adolescents were about one standard deviation
below average standard math achievement scores; calculations
(mean standard score � 86.70), t(185) � 15.78, p � .001; applied
problem-solving (mean standard score � 89.50), t(181) � 16.87,
p � .001; math fluency (mean standard score � 85.12), t(186) �
18.93, p � .001; and broad mathematics (mean standard score �
83.75), t(180) � 21.74, p � .001.

Those who benefited in terms of solution time only or both
solution time and accuracy were significantly different from their
peers in frequency of min-counting, t(185) � �2.83, p � .01 and
t(185) � �3.72, p � .001, respectively, but they were not signif-
icantly different from each other, t(185) � �.78, p � .72. How-
ever, those for whom the model predicted the most extreme ben-
efits (in both solution time and accuracy) used naïve counting
strategies significantly more than the solution time only benefiters,
t(185) � 3.19, p � .01. Though these “dual benefiters” were more
developmentally naïve than their “solution time only benefiter”
counterparts, the two groups were not significantly different from
each other in their proficiencies with calculations, t(184) � �1.97,
p � .97, applied problems, t(180) � 4.00, p � .77, math fluency,
t(185) � 1.40, p � .99, or broad mathematics, t(179) � .75, p �
.99.

Examining EIRT Model Parameters for Convergent
and Discriminant Validity

Though it was possible to examine group differences for min-
benefiters, as Figures 4C, 4D, and 5 indicate, the distributions of
EIRT model estimates were in fact continuous. Post hoc regression
analyses tested the hypothesis that addition strategy modeling
parameters (treated as continuous predictors) were predictive of
broad math ability but less so of reading efficiency (see Table 5).
Strategy predictors were examined using simultaneous entry. None
of the models tested demonstrated issues of (non)linearity, and
examination of residuals did not reveal any issues with non-
normality, heteroscedasticity, or autocorrelation. However, given
the strong correlations between the EIRT model intercepts and
slopes, which were also evident in the replication sample, multi-
collinearity between predictors was a concern. Unsurprisingly,
larger than desirable variance inflation factors (VIF 	 10) and
smaller than desirable tolerance values (tolerance � .20) were
consistently noted for the solution time intercept and the accuracy
intercept across models tested (O’Brien, 2007). Therefore, post
hoc regression analyses did not include these addition strategy
modeling parameters as predictors of broad math and reading
outcomes. (Note that the “Intercept” values in Table 5 reflect
intercepts for corresponding post hoc regression models, e.g., the
average standard score of Broad Math, all other things being equal,
and they do not reflect solution time or accuracy intercept values
from the central EIRT model of the current study.)

The EIRT model parameters evidenced convergent validity with
the Woodcock-Johnson Broad Math ability subscale and were
predictive of performance on more narrow measures of mathemat-

Figure 5. Accuracy BY Solution Time Slope Bivariate Distribution. See the online article for the color version
of this figure.
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ical competence (see Table 5). Addition strategy solution time
slope was a significant, positive predictor of broad math ability,
B � 2.74, t(176) � 4.12, p � .001. Thus, for every second that
min-counting increased solution time there was an average 2.74
standard score increase in broad math scores. Addition strategy
accuracy slope was also a significant, positive predictor of broad
math ability, B � 61.96, t(176) � 4.45, p � .001. For every .01
unit increase in probability associated with min-counting, there
was an average .62 standard unit increase in broad math scores.
Finally, the ratio of addition strategy items upon which immature
counting strategies (i.e., nonmin-counting strategies such as finger
counting all) were used was a significant, negative predictor of
broad math ability, B � �23.00, t(176) � �4.84, p � .001. For
every .01 unit increase in the proportion of items on which naïve
counting was used, there was an average .23 unit decrease in broad
math standard scores. The strategy variables accounted for a sig-
nificant portion of variance in broad math ability standard scores,
R2 � .42, F(3, 176) � 42.88, p � .001.

The EIRT model parameters also evidenced discriminant valid-
ity with reading efficiency. Neither the solution time slope nor the
accuracy slope was a significant predictor of reading efficiency
B � �.76, t(137) � �1.13, p � .26, and B � 26.28, t(137) �
1.89, p � .06, respectively. Interestingly, the proportion of items
on which immature counting strategies were used was a significant
predictor of reading efficiency, B � �12.34, t(137) � �2.70, p �
.01. For every .01 unit increase in the proportion of items on which
immature counting strategies were used, there was an average .12
unit decrease in reading efficiency scores. Still, as was expected,
this model explained very little variance in reading efficiency R2 �
.08, F(3, 137) � 4.22, p � .01.

Summary of Major Findings

Results from Model 1 indicated that differences between both
items and persons contributed to significant variances in solution
time and accuracy outcomes. Intraclass correlations indicated that
failing to model these differences (random intercepts) would be
ignoring between 12 and 37% of the variances in adolescent
problem-solvers’ speed and accuracy in solving addition problems.

Model 2 showed that use of the min-counting strategy affected
solution times and accuracies but did so differently for different
items and persons. Thus, as the SCM postulates, the costs and
benefits of using min-counting relative to other strategies varied
depending on the problem-solver and item being solved. The
magnitudes and directions of these results were robust and repli-
cated across random samples of singleton participants.

Model 2 parameters also revealed significant individual differ-
ences in both items and persons for solution times and accuracies,
and that some adolescents deviated substantively from their peers
by showing atypical strategy choices. These were adolescents for
whom min-counting was an efficient strategy, given they often
used sum counting and other immature strategies, but they did not
use it consistently. More broadly, the EIRT parameters demon-
strated convergent and discriminant validity; they were predictive
of broad mathematics but not reading achievement. Taken to-
gether, these results indicate that the EIRT model parameters for a
simple addition strategy task provided estimates for individual
adolescents that were reliable, valid, and useful for identifying
students with broad difficulties with mathematics.T
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Discussion

The current study examined the SCM (Siegler & Robinson,
1982; Siegler & Shrager, 1984) from an individual difference
perspective using EIRT modeling techniques; specifically, dem-
onstrating both item-level and person-level variation in the strat-
egy choices and solution times of adolescent problem-solvers. Not
only did persons and items differ from each other, but the effect of
the min-counting strategy had different levels of impact for dif-
ferent persons on different items. In addition, EIRT model esti-
mates of individual differences were examined for their utility in
identifying adolescents with unusual patterns of strategy choices
and solution times, relative to adolescents generally, and for their
convergent and discriminant validity with measures of broad ac-
ademic achievement.

Results supported a central tenet of the SCM, that variance in
both items and persons can affect problem-solving outcomes.
Indeed, significant variance in both item and person-level inter-
cepts indicated that collapsing across either of these levels could
yield highly overgeneralized results, confirming Siegler’s (1987b)
early caveats about averaging across items and extending this to
averaging across people. The EIRT framework of explanatory
measurement provided an ideal outlet for examining the multilevel
variance predicted by the SCM.

The min-counting strategy was used to solve relatively simple
addition problems with surprising frequency in this sample of
adolescents, but the efficacy of its use depended upon both items
and persons. Min-counting became increasingly maladaptive as
problem sizes increased. Most participants were slower when
using min-counting relative to the other strategies, such as retrieval
or decomposition, but not significantly more or less likely to
correctly answer problems. However, for some problem-solvers,
min-counting provided significant benefits compared to the less
sophisticated strategies (e.g., sum counting) they frequently em-
ployed.

The “min-benefiters” identified by this EIRT model would have
been obscured using a more traditional approach to SCM evalua-
tion because their strategy choice pattern would have been col-
lapsed into the pattern of their typically developing peers. In other
words, the overall (across the entire sample) use of unsophisticated
counting strategies (e.g., sum counting) would have seemed infre-
quent and the benefits of min-counting for some adolescents would
not have become apparent. These adolescents were not members of
an atypical population, and none had been identified with MLD.
Indeed, the EIRT model parameters were distributed continuously,
and there were no apparent clusters of persons at the tail end of the
distribution, as is generally indicative of distinct populations.
Rather, these “min-benefiters” appeared to be adolescents who are
sometimes called “garden variety low achievers.” They were con-
sistently about one standard deviation below average in their broad
mathematics achievement, not low enough to be labeled as MLD
in most settings but not high enough to meet grade level standards.
In any case, their use of unsophisticated counting strategies and the
attendant benefits of min-counting are consistent with studies of
low achieving elementary schoolchildren; that is, they use the
same types of strategies in problem solving as typically achieving
children, but the strategy mix is similar to that found in younger
children (Geary, 1993). Taken together, these results indicate that
a simple addition assessment may provide researchers and practi-

tioners with valuable information about mathematical skill devel-
opment, when the assessment is interpreted with a sound combi-
nation of theory (the SCM) and analytical approach (EIRT).

Implications for Individual Differences Research on
Strategy Choice

Using the traditional approach to examine the SCM, one would
assume that all participants were from a similar population of
problem-solver and collapse data across items and/or persons to
describe average effects (Siegler, 1987b). Such an approach has
been useful for detailing group (e.g., comparing groups of low- and
typically achieving children) or grade-level differences in the
pattern of strategy choices (e.g., overall frequency of min-counting
across problems) but does not fully capture item-level and person-
level variation in these choices (see e.g., Bailey et al., 2012; Geary
et al., 2004; Siegler, 1991). In other words, a traditional individual
differences analysis based on the SCM would have used clustering
analyses or criterion measures of population (e.g., math learning
disability diagnosis) to collapse across individuals in “different”
populations. In both of these analytic approaches, the natural
variance between items and persons would have been largely
obscured in favor of emphasizing universal trends in problem-
solving for the identified group.

The EIRT approach used in the current study demonstrated, in
keeping with predictions based on the SCM, that even typical
problem-solvers have natural fluctuations in speed, accuracy, and
strategy usage during problem solving. Some adolescents in the
current study, however, demonstrated problem-solving trends that
were very different from their peers. The more nuanced examina-
tion of individual differences in the current study led to the
observation that counting (a) had not receded as a primary strategy
for solving addition problems for many adolescents and (b) ap-
peared to be adaptive for some adolescents but maladaptive for
most. Integrating the behavioral universals and individual differ-
ences perspectives in complementary ways may have interesting
implications for the SCM as it continues to evolve.

Implications for Identifying and Remediating
Mathematical Difficulties

Most students in the United States do not achieve grade level
proficiency in mathematics, and the percentages of students per-
forming at grade level drop dramatically as they progress through
school (Kelly et al., 2014; National Center for Education Statistics,
2013). The majority of these low achieving students are not iden-
tified with a specific mathematical learning disability. Their diffi-
culties with mathematics are not necessarily extreme enough to
warrant such a diagnosis, and simply falling below grade level
standards may or may not be indicative of the difficulties with
working memory, processing speed, fact retrieval, and procedural
deficits associated with MLD (see, e.g., Compton, Fuchs, Fuchs,
Lambert, & Hamlett, 2012; Geary, 1993). The “min-benefiters”
identified in the current study were likely representative of this
larger trend in mathematical (under)achievement.

However, the fact that the “min-benefiters” were typically de-
veloping adolescents who had not been identified with MLD does
not mean they would not benefit from intervention. Indeed, the
current results suggested they would likely benefit from instruction
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that fostered the more consistent use of min-counting in place of
the less sophisticated strategies they often used (e.g., counting all
fingers). The results from the current study suggested that not only
would these adolescents benefit from mastering min-counting in
proximal outcomes (solution times and accuracy on a simple
addition assessment) but also in more distal outcomes (calcula-
tions, applied problems, math fluency, and broad math achieve-
ment). For students with garden variety mathematical difficulties,
simply advancing to developmentally mature strategy selection
follows from the SCM and may be an important intervention goal,
one that is often overlooked in educational settings (but see Fuchs
et al., 2013).

Limitations and Future Directions
Though the primary purpose of the current study was to examine

the SCM using EIRT modeling techniques with a sample of
adolescent problem-solvers, it should be noted that it is possible to
build upon Model 2 by adding slopes for other types of strategies
(e.g., retrieval, decomposition), item-level predictors (e.g., fixed
effects for problem sum, item formatting), and/or person-level
predictors (e.g., fixed effects for working memory, and/or gender).
In particular, unpacking and disaggregating strategies to examine
individual differences in use of decomposition and retrieval may
provide valuable insights into problem-solving and could be par-
ticularly useful for identifying gifted problem-solvers. However,
the current study was an initial attempt at evaluating the SCM
using EIRT. Expanding the complexity of the current model to
include more random effects for other strategies was beyond the
scope of this study and likely underpowered given the current
study’s sample size. Future research should examine the effects of
both immature strategies (e.g., sum-counting, min-counting) and
more advanced strategies (e.g., retrieval, decomposition) in models
with multiple slopes for strategy and sample sizes large enough to
accommodate these effects.

Similarly, the sample in the current study represented typically
developing adolescents (very few reported disabilities and these
were generally mild disabilities such as attention problems), who
were mostly White and largely from middle-class families. In
addition, because the Bayes estimator can be sensitive to the
presence of extreme cases, current model estimates may be inflated
due to the presence of the “min-benefiters.” Extreme cases were
not excluded from the current study because they were (a) valid
data points, and (b) of direct consequence to the individual differ-
ences research question. However, taken together, caution should
be used in generalizing the specific results from the present study
to other populations of problem-solvers. Future research should
examine EIRT models with larger samples representing additional
populations. In particular, given the wealth of research regarding
the SCM’s applicability to children with mathematical learning
disabilities, researchers should extend this model to children with
different learning profiles.

Conclusion

Both items and persons contributed significant variance to the
addition problem-solving performance considered in this study,
and the use of an EIRT framework allowed for the explicit testing
of this central tenet of the SCM. The use of EIRT models also
allowed for a more nuanced exploration of individual differences

between items and persons, because each item and each person
was allowed to vary from an average effect. Thus, the EIRT
approach provided validations and unique insights into the indi-
vidual differences in strategy choice during the period of adoles-
cence. Of particular interest to researchers and practitioners are the
findings that (a) even among typically developing adolescents,
individual differences in strategy choice on a simple addition
measure were meaningful indicators of ability, and (b) strategy
choice provided important insights for remediating mathematics
achievement difficulties.
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Appendix A

Technical EIRT Model Equations

Model 1: Mixed Model Equation

Rip � �0i � �0p � rip

where Rip is person p’s response (solution time or accuracy) to
item I and 
0i is the random intercept of item i, or item i’s average
response across all people, allowed to vary across items such that
response is item-specific.

�0i � �0i; �0i � N�0, �0i
2 �

�0i is the deviation of item i from the mean response of all items,
distributed normally with M � 0 and variance � �0i

2 , thus for the
average item, 
0i � �0i � 0. 
0p is the random intercept of person
p, or person p’s average response across all items, allowed to vary
across people such that response is person-specific

�0p � �00 � �0p; �0p � N�0, �0p
2 �

�00 is the mean response of all people, the grand mean; �0p is the
deviation of person p from the mean response of all people �00,
and �0p is distributed normally with M � 0 and variance � �0p

2 ,
thus for the average person, 
0p � �00; and rip is the model
residual for response, normally distributed with mean 0 and vari-
ance �ip

2 .

rip � N�0, �ip
2 �

Thus, substituting the random intercept and slope equations in the
mixed model equation:

Rip � �0i � �00 � �0p � rip

Model 2: Mixed Model Equation

Rip � �0i � �1iCip � �0p � �1pCip � rip

Using the distributive property of multiplication, this equation can
be rewritten as

Rip � �0i � �0p � (�1i � �1p)Cip � rip

where Rip is person p’s response (solution time or accuracy) to
item i and 
0i is the random intercept of item i, or item i’s average
response across all people, allowed to vary across items such that
response is item-specific.

�0i � �0i; �0i � N�0, �0i
2 �

�0i is the deviation of item i from the mean response of all items,
distributed normally with M � 0 and variance � �0i

2 , thus for the
average item, 
0i � �0i � 0. 
1i is the random slope of item i, the
random effect of counting strategy usage on response, allowed to
vary across items such that the effect of counting is item-specific.

�1i � �1i; �1i � N�0, �1i
2 �

�1i is the deviation of item i from the mean effect of counting on
response across all items, distributed normally with M � 0 and
variance � �1i

2 and �10i is the covariance between the random
intercept and the random slope, the extent to which the use of
counting strategies tends to effect responses. 
0p is the random
intercept of person p, or person p’s average response across all
items, allowed to vary across people such that response is person-
specific.

�0p � �00 � �0p; �0p � N�0, �0p
2 �

�00 is the mean response of all people, the grand mean, and �0p is
the deviation of person p from the mean response of all people �00,
and �0p is distributed normally with M � 0 and variance � �0p

2 ,
thus for the average person, 
0p � �00. 
1p is the random slope of
person p, the random effect of counting strategy usage on person
p’s response, allowed to vary across people such that the effect of
counting is person-specific

�1p � �10 � �1p; �1p � N�0, �1p
2 �

�10 is the mean effect of counting strategy usage on response
across all people, the grand mean; �1p is the deviation of person p
from the mean effect of counting on response across all people
(�10), distributed normally with M � 0 and variance � �1p

2 ; and
�10p is the covariance between the random intercept and the
random slope, the extent to which the use of counting strategies
tends to effect responses. Cip is the term denoting whether person
p counted on item i (0 if no counting strategy was used; 1 if a
counting strategy was used) and rip is the model residual for
response, normally distributed with mean 0 and variance �ip

2 .

rip � N�0, �ip
2 �

Thus, substituting random intercept and slope equations in the
mixed model . . .

Rip � �0i � �00 � �0p � (�1i � �10 � �1p)Cip � rip

(Appendices continue)
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Appendix B

Technical Model Replicability Testing

Model 1 Replicability

Across items and people, solution times varied by about 4 s on
average (residual variance, �ip � 3.59 s, p � .001). Items varied
significantly in their solution times (item solution time intercept
standard deviation, �0i � 2.84 s, p � .001). People varied signif-
icantly in their solution times (person solution time intercept
standard deviation, �0p � 2.23 s, p � .001), but the average person
took approximately 4 s to solve the average item (person solution
time grand mean, γ00 � 3.93, p � .001). Approximately 31% of
the variance in solution times was accounted for by differences
between items, and approximately 19% of the variance in solution
times was accounted for by differences between people.

Items also varied significantly in their predicted accuracy (item
accuracy intercept variance, �0i

2 � .24, p � .001). People varied
significantly in their predicted accuracy (person accuracy intercept
variance, �0p

2 � .17, p � .001), but the average person had a
probability of .96 of correctly solving the average item (person
accuracy threshold, γ00 � �1.70, p � .001). Approximately 17%
of the variance in accuracy was accounted for by differences
between items, and approximately 12% of the variance in accuracy
was accounted for by differences between people. Taken together,
these results also suggested that failing to model individual vari-
ance for both items and persons could lead to missing important
sources of variance in both solution times and accuracies.

Model 2 Replicability

Across items and people, solution times varied by about 3 s on
average (residual variance, �ip � 3.16 s, p � .001). Items varied
significantly in their solution times (item solution time intercept
standard deviation, �0i � 2.46 s, p � .001). The use of min-
counting strategies varied in its effect on item solution times (item
solution time slope standard deviation, �1i � 11.58 s, p � .001).
Solution times and the effects of min-counting strategies on solu-
tion times were again significantly correlated at a similar magni-
tude, r � .79. In other words, items that took longer to solve

overall tend to take even longer if min-counting strategies were
used.

People also varied significantly in their solution times (person
solution time intercept standard deviation, �0p � 1.91 s, p � .001),
but on average people took approximately 4 s to solve problems
(person solution time grand mean, γ00 � 4.05, p � .001). The
overall effect of min-counting was an increase in solution times of
about 5 s (person solution time slope mean, γ10 � 4.86, p � .001).
However, the use of min-counting strategies varied significantly in
its effect on people’s solution times (person solution time slope
standard deviation, �1p � 2.57 s, p � .001). Again, the significant
covariance between the random intercept and slope, r � �.38, p �
.001 indicated that people who were slower overall tended to have
a lower solution time penalty for use of counting, but faster people
tended to take longer if they used min-counting strategies.

Items varied significantly in their predicted accuracy (i.e., their
difficulty; item accuracy intercept variance, �0i

2 � .26, p � .001).
The use of min-counting strategies varied in its effect on item
accuracy (item accuracy slope variance, �1i

2 � .19, p � .001).
Again, item difficulty and the effects of min-counting strategies on
item accuracy were not significantly related, r � �.27, p � .19.

People also varied significantly in their accuracy (person accu-
racy intercept variance, �0p

2 � .22, p � .001), but the average
person had a probability of .97 of correctly solving the average
item (person accuracy threshold, γ00 � �1.91, p � .001). Overall,
for the average person, the use of min-counting strategies did not
significantly impact the likelihood of generating a correct answer
(person accuracy slope mean, γ10 � �.19, p � .09). However,
people differed significantly in how accurately they used min-
counting (person accuracy slope variance, �1p

2 � .23, p � .001).
Unlike in the first random sample, the covariance between the
random intercept and slope, r � �.42, p � .03 was significant,
indicating that people who were less accurate overall were even
less accurate when they used min counting.
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